
A tutorial for 2d and 3d vector and texture mapped graphics
Version 0.50ß

© 1994, 1995 by Sébastien Loisel

Note
This document is provided "as is", without guaranty of ANY kind. This document is copyrighted 1994
by Sébastien Loisel. It may be distributed freely as long as no fee except shipping and handling is
charged for it. Including this document in a commercial package requires the written permission of the
author, Sébastien Loisel.

If you want to reach me, see the end of this file.

1 An introduction to 3d transformations

First, let's introduce the idea of projections. We have to realize that we are trying to view a 3d world
through a 2d «window». Thus, one full dimension is lost and it would be absurd ot think that we can
reconstitute it wholly and recognizably with one less dimension. However, there are many forms of
depth-cueing that we introduce in a 2d image to help us recognize that 3d dimension. Examples include
but are not limited to reduced lighting or visibility at a distance, reduced size at a distance, out-of-focus
blur, etc...

Our media is a screen, ideally flat, and the 3d world being represented is supposed to look as real as
possible. Let's look at how the eyes see things:

µ §
Figure 1

The projection rays are the beams of light that reflect off the objects and head to your eye.
Macroscopically, they are straight lines. If you're projecting these beams on a plane, you have to find
the intersection of these beams with the plane.

µ §
Figure 2

The projection points are thus the intersection of the projection rays with the projection plane. Of
course, projection points coming from projection lines originating from behind an object are obviously
hidden, and thus comes the loss of detail from 3d to 2d. (i.e. closer objects can hide objects that lie
further away from the eye).

The objects can be defined as a set of (x,y,z) points in 3d space (or 3space). Thus, a filled sphere can
be defined as x**2+y**2+z**2<=1. But we need to simplify the problem right away because of
machine limitations. We can safely assume the eye is always outside any object, thus we do not need
do define the interior. [Note: a**b stands for «a raised to the bth power», thus, x**2 is x squared]

Now let us define a projection onto a plane. Many different projections could be defined, but the one
that interests us is the following for it's simplicity. Projecting takes any given point (x,y,z) and
localizes it on an (u,v) coordinate system. I.e. space (x,y,z) is mapped onto a plane (u,v). Let's
transform (x,y,z) first. Multiplying (x,y,z) by a constant keeps it on a line that passes through (0,0,0)
(the origin). We will define that line as the projection ray for our projection. Since all of these lines
pass through the origin, we thus define the origin as our eye. Let the constant be k. Thus our
transformation as of now is k(x,y,z). Now we want to set everything into a plane. If we select k as
being 1/z, assuming z is nonzero, we get a projected point of (1/z)(x,y,z). This becomes (x/z, y/z, 1).
Thus all points of any (x,y,z) value except z=0 will be projected with a value z'=z/z of one. Thus all
points lie in the plane z=1. This projection thus fits our need for a projection with linear projector
through the eye on a plane surface.

If you didn't get all that right away, you can always look it up later. The important thing to remember
now is this: to project from (x,y,z) onto (u,v) we decide to use

u=x/z
v=y/z

But, I hear you say, this means the eye is facing parallel to the z axis, centered on the origin and is not
banked. What if that is not what I desire?

First, it is obvious that if the eye is at location (a,b,c) it will not affect what one would see to move
EVERYTING including the eye by (-a,-b,-c). Then the eye will be centered.

Second, and almost as obvious, if the eye is rotated around the x,y and z axis by agles of rx, ry and rz
respectively, you can rotate EVERYTHING by the exact opposite angles, which will orient the eye
correctly without changing what the eye would see.

Translation (moving) is a simple addition. I.e. (x,y,z)+(a,b,c) becomes (x+a,y+b,z+c). Additions are
fairly quick. But there is the problem of the rotations.

1.1 Trigonometry

We will do it in two dimensions first.

µ §
Figure 3

We have the point defined by (x,y) and we want to rotate it with a counterclockwise angle of b to
(x',y'). See figure 3. The radius r stays the same throughout the rotation, as per definition, rotation
changes the angle but not distance to origin. Let r be the radius (not shown on figure 3). We need to
express x' and y' as functions of what we know, that is x, y and b. The following can be said:

y'=sin(a+b)r
x'=cos(a+b)r

With the identities sin(a+b)=sin(a)cos(b)+sin(b)cos(a) and cos(a+b)=cos(a)cos(b)-sin(a)sin(b), we
substitute.

y'=rsin(a)cos(b)+rcos(a)sin(b)
x'=rcos(a)cos(b)-rsin(a)sin(b)

But from figure 3 we know that

rsin(a)=y and
rcos(a)=x

We now substitute:

y'=ycos(b)+xsin(b)
x'=xcos(b)-ysin(b)

A special note: you do not normally calculate sinuses and cosinuses in real time. Normally, you build a
lookup table, that is, an array. This array contains the precalculated value of sin(x) for all values of x
within a certain range. That is, if the smallest possible angle in your model is on half of a degree, then
you need a sinus table containing 720 entries, of which each entry is the value of the sinus of the
corresponding angle. You can even note that a sinus is highly symmetric, that is, you need the values
of sin(x) only for x between 0 and 90 degrees. Furthermore, you do not need a cosine table, as
cos(x)=sin(x+90 degrees). This and fixed point mathematics may become obsolete as floating point
processors become faster and faster. A good algorithm for calculating a sinus can be very quick today
on a reasonably high performance platform, and it shouldn't use powers.

With that said, we will approach briefly 3d transformations.

In 3d, all rotations can be performed as a combination of 3 rotations, one about the x axis, one about
the y axis and one about the z axis. If you are rotating about the z axis, use the exact same equation as
above, and leave the z coordinate untouched. You can extrapolate the two other transformations from
that.

Note that rotating first about the x axis and then about the y axis is not the same as rotating about the y
axis and then the x axis. Consider this: point (0,0,1) rotated 90° about the x axis becomes (0,1,0).
Then, rotated 90° about the y axis it remains there. Now, rotating first about the y axis yields (1,0,0),
which rotated then about the x axis stays at (1,0,0), thus the order of rotations is important [(0,1,0) and
(1,0,0) are not the same].

Now, if you are facing west (x axis, towards negative infinity). The user pulls the joystick up. You
want the ship to dive down as a result of this. You will have to rotate the ship in the xy plane, which is
the same as rotating about the z axis. Things get more complicated when the ship is facing an arbitrary
angle.

Here I include a document authored by Kevin Hunter. Since he did a very nice job of it, I didn't see a
reason to re-do it, especially when considering the fact that it would probably not have been as tidy. :-)
So, from here to chapter two has been entirely written by Kevin Hunter.

Unit Vector Coordinate Translations
By Kevin Hunter

One of the more common means of doing “world to eye” coordinate transformations involves
maintaining a system of “eye” unit vectors, and using a property of the vector dot product. The
advantage of this approach, if your “eye” frame of reference is rotated with respect to the “world”
frame of reference, is that you can do all the rotational calculation as simple projections to the unit
vectors.

The dot product of two vectors yields a scalar quantity:

R dot S = |R| |S| cosa

where |R| and |S| are the lengths of the vectors R and S, respectively, and a is the angle between the
two vectors. If S is a unit vector (i.e. a vector whose length is 1.0), this reduces to

R dot S = |R| cosa

However, a bit of geometry shows that |R| cosa is the portion of the R vector that is parallel to the S
vector. (|R| sina is the part perpendicular). This means that if R is a vector with its origin at the eye
position, then R can be converted from “world” space into “eye” space by calculating the dot product
of R with the eye X, Y, and Z unit vectors. Getting a “eye origin” vector is trivial - all you need to do
is subtract the “world” coordinates for the eye point from the “world” coordinates for the point to be
transformed. If all this sounds a bit foggy, here’s a more concrete example, along with a picture. To

make the diagram easier, we’ll consider the two-dimensional case first.

µ §
Figure 3a

In this figure, the “world” coordinates have been shown in their typical orientation. The “eye” is
displaced up and left, and rotated to the right. Thus, the EyeX vector would have world-space
coordinates something like (0.866, -0.500) [I’ve picked a 30 degree rotation just for the numbers,
although my less-than-perfect drawing talents don’t make it look like it). The EyeY vector, which is
perpendicular to the EyeX vector, has world-space coordinates (0.500, 0.866). The eye origin point is
at something like (1, 2).
Based on these numbers, any point in world space can be turned into eye-relative coordinates by the
following calculations:

EyeSpace.x = (Px - 1.0, Py - 2.0) dot (0.866, -0.500)
= (0.866Px - 0.866) + (-0.500Py + 1.00)
= 0.866Px - 0.500Py + 0.134

EyeSpace.y = (Px - 1.0, Py - 2.0) dot (0.500, 0.866)
= (0.500Px - 0.500) + (0.866Py - 1.732)
= 0.500Px + 0.866Py - 2.232

The simple way of implementing this transformation is a two-step approach. First, translate the point
by subtracting the eye origin. This gives you the eye-relative vector. Then, perform each of the three
dot products to calculate the resulting X, Y, and Z coordinates in the eye space. Doing this takes the
following operations for each point:

1. Three subtractions to translate the point
2. Three multiplications and two additions for the X coordinate
3. Three multiplications and two additions for the Y coordinate
4. Three multiplications and two additions for the Z coordinate

Since additions and subtractions cost the same in virtually any system, this reduces to a total of nine
multiplications and nine additions to translate a point.

If you’re striving for performance, however, you can make this run a little better. Note, in the two-
dimensional example above, that we were able to combine two constants that fell out of the second line
into a single constant in the third line. That last constant turns out to be the dot product of the
particular eye coordinate vector and the negative of the eye origin point. If you’re smart, you can
evaluate this constant once at the beginning of a set of point transformations and use it over and over
again.

This doesn’t change the total number of operations - the three subtractions you take away at the
beginning you put back later. The advantage, however, is that the constant is known ahead of time,
which may let you keep it in a register or cache area. Basically, you’ve reduced the number of
constants needed to transform the coordinates and the number of intermediate values, which may let
you keep things in registers or the cache area. For example, this approach lets you use a stacked-based
FPU in the following manner:

push P.x
push UnitVector.x
mult
push P.y
push UnitVector.y
mult
add
push P.z
push UnitVector.z
mult
add
push CombinedConstant
add
pop result

This algorithm never has more than three floating point constants on the FPU stack at a time, and
doesn’t need any of the intermediate values to be removed from the FPU. This type of approach can
cut down on FPU-to-memory transfers, which take time.

Of course, if you don’t have a stack-based FPU, this second approach may or may not help. The best
thing to do is to try both algorithms and see which works better for you.

Maintaining Systems of Unit Vectors

Spinning In Space
To effectively use the system discussed in the previous section, you need to be able to generate and
maintain a set of eye-space unit vectors. Generating the vectors is almost never a problem. If nothing
else, you can use the world X, Y and Z vectors to start. Life gets more interesting, however, when you
try to maintain these vectors over time.

Translations of the eye point are never a problem. Translations are implemented by adding or
subtracting values to or from the eye origin point. Translations don’t affect the unit vectors.
Rotations, however, are another matter. This kind of makes sense, since handling rotations is what
maintaining this set of vectors is all about.

To be effective, the set of three unit vectors have to maintain two basic properties. First, they have to
stay unit vectors. This means that we can’t let their lengths be anything other than 1.0. Second, the
three vectors have to stay mutually perpendicular.

Ensuring that a vector is a unit vector is very straight-forward conceptually. All you need to do is to
calculate the length of the vector and then divide each of its individual coordinates by that length. The
length, in turn, can be easily calculated as SQRT(x^2 + y^2 + z^2). The only interesting part of this is
the SQRT() function. We’ll come back to that one later.

Keeping the set of vectors perpendicular takes a bit more work. If you restrict rotations of the vector
set to sequences of rotations about the individual vectors, it’s not too hard to do a decent job of this.

For example, if you assume that, in eye space, Z is to the front, X is to the right and Y is down (a
common convention since it lets you use X and Y for screen coordinates in a 0,0 == top left system),
rotation of the eye to the right involves rotating around the Y axis, with Z moving toward X, and X
toward -Z. The calculations here are very simple:

Znew = Zoldcosa + Xoldsina
Xnew = Xoldcosa + (-Zold)sina

Of course, while you’re doing this you need to save at least the original Z vector so that you don’t
mess up the X calculation by overwriting the Z vector before you get a chance to use it in the second
equation, but this is a detail.

In a perfect world, when you’re done with this rotation, X, Y, and Z are still all unit vectors and still
mutually perpendicular. Unfortunately, there’s this thing called round-off error that creeps into
calculations eventually. With good floating point implementations, this won’t show up quickly. If
you’re having to do fixed-point approximations (for speed, I assume) it will show up a lot faster, since
you’re typically storing many fewer mantissa bits than standard FP formats.

To get things back square again there are a couple of things you can do. The most straight forward is
to use the cross product. The cross product of two vectors yields a third vector which is guaranteed
(within your round-off error) to be perpendicular to both of the input vectors. The cross product is
typically represented in determinant form:

x y z

A cross B = Ax Ay Az

Bx By Bz

In more conventional format, the vector resulting from A cross B is

(AyBz - AzBy, AzBx - AxBz, AxBy - AyBx)

One thing about the cross product is that you have to watch out for the sign of things and the right-
handedness or left-handedness of your coordinate system. A cross B is not equal to B cross A - it’s
equal to a vector in exactly the opposite direction. In a right-handed coordinate system, X cross Y is
Z, Y cross Z is X, and Z cross X is Y. In a left-handed coordinate system, the arguments of the
crosses have to be exchanged.

One tactic, then, is to rotate one of the vectors, and then, instead of rotating the other, to recalculate the
other using the cross product. That guarantees that the third vector is perpendicular to the first two. It
does not, of course, guarantee that the vector that we rotated stayed perpendicular to the stationary
vector. To handle this, we could then adjust either the stationary vector or the one we originally
rotated by another cross product if we wanted to. In practice, this frequently isn’t necessary, because
we rarely are rotating only about one axis. If, for example, we pitch and then roll, we can combine

rotations and crosses so that no vector has undergone more than one or two transformations since it
was last readjusted via a cross product. This keeps us from building up too much error as we go along.

One other thing to remember about the cross product. The length of the generated vector is the product
of the lengths of the two input vectors. This means that, over time, your calculated “cross” vectors will
tend to drift away from “unitness” and will need to be readjusted in length.

Faster!
It is unusual in interactive graphics for absolute and unwavering precision to be our goal. More often
(much more often) we’re willing to give up a tiny bit of perfection for speed. This is particularly the
case with relatively low-resolution screens, where a slight error in scale will be lost in pixel rounding.
As a result, we’d like a measure of how often we need to readjust the perpendicularity of our unit
vectors. As it happens, our friend the dot product can help us out.

Remember that we said that the dot product of two vectors involves the cosine of the angle between
them. If our unit vectors are actually perpendicular, the dot product of any pair of them should then be
zero, since the cosine of a right angle is zero. This lets us take the approach of measuring just how
badly things have gotten out of alignment, and correcting it only if a tolerable threshold has been
exceeded. If we take this approach, we “spend” three multiplications and two additions, hoping to save
six multiplications and three additions. If we’re within our tolerance more often than not, we’re in
good shape.

Foley et al point out that we can make this tradeoff work even better, however. Remember that the dot
product represents the projection of one vector along another. Thus, if we find that X dot Y is not
zero, the resulting value is the projection of the X vector along the Y vector (or the Y vector along the
X vector, if you want). But if we subtract from the X vector a vector parallel to the Y vector whose
length is this projection, we end up with X being perpendicular to Y again. The figure may help to
make this clearer

µ §
Figure 3b

This lets use the following algorithm:
A = X dot Y
if (abs(A) > threshold)
{

X -= Y times A
}
This approach uses three multiples and two adds if we don’t need to adjust, and six multiplies
and five adds if we do. This represents a savings of three multiplications over the “test and
then cross product” approach. Note that, like the cross product approach, this technique will
tend to change the length of the vector being adjusted, so vectors will need to be “reunitized”
periodically.

Perfection?
If we want to use our unit vector system, but we need to model rotations that aren’t around one of our
unit axes, life gets more difficult. Basically, except in a very few circumstances (such as if the rotation
is around one of the world axes) the calculations are much harder. In this case, we have at least two
options. The first is to approximate the rotation by incremental rotations that we can handle. This has

to be done carefully, however, because rotations are not interchangeable - rotating about X then Y
doesn’t give the same answer as rotating around Y then X unless the angles are infinitely small.

The second option is to use quaternions to do our rotations. Quaternions are a very different way of
representing rotations and rotational orientations in space. They use four coordinates rather than three,
in order to avoid singularities, and can model arbitrary rotations very well. Unfortunately, I’m not
completely up on them at this point, so we’ll have to defer discussion of them until some future issue
when I’ve had a chance to do my studying.

Efficient Computation of Square Roots

We mentioned earlier that we’d need to look at square roots to “unitize” vectors.

Let’s assume for the moment that we need to calculate the square root of a number, and we don’t have
the hardware to do it for us. Let us assume further than multiplications and divisions are cheap,
comparitively speaking. How can we go about calculating the square root of a number?

[Note: Intel-heads like me think this is an unnatural situation, but it does, in fact, occur out there. For
example, the Power PC can do FP add/subtract/multiply/divide in a single cycle, but lacks sqrt() or trig
function support.]

Isaac Strikes Again
Perhaps the simplest approach is to use Newton’s method. Newton’s method is a technique for
successively approximating roots to an equation based on the derivative of that equation. To calculate
the square root of N, we use the polynomial equation x2 - N = 0. Assuming that we have a guess at the
square root, which we’ll call xi, then next approximation can be calculated by the formula

xi+1 = xi + (N - xi
2) / (2xi)

This begs two questions. First, how do we get started? Second, when do we get there? To answer the
first part, Newton’s method works really well for a well-behaved function like the square root function.
In fact, it will eventually converge to the correct answer no matter what initial value we pick. To
answer the second part, “Well, it all depends on where you start.”

To get an idea of how this iteration performs, let’s expand it a bit. Let’s assume that our current guess
(xi) is off by a value “e” (in other words, the square root of N is actually xi + e.) In this case,

xi+1 = xi + ((xi + e)2 - xi
2) / (2xi)

= xi + (xi
2 +2exi + e2 - xi

2) / (2xi)
= xi + (2exi + e2) / (2xi)
= xi + e + (e2 / 2xi)

But since “xi + e” is the answer we were looking for, this says that the error of the next iteration is
“e2/2xi”. If the error is small, the operation converges very quickly, because the number of accurate
bits doubles with each iteration. If the error is not small, however, it’s not so obvious what happens.

I’ll spare you the math, and simply tell you that if the error is large, the error typically halves each
iteration (except for the first iteration, in which the error can actually increase). So, while a bad initial
guess won’t prevent us from finding an answer, it can slow us down a lot.

So how do we find a good initial guess? Well, in many cases, we have a good idea what the value
ought to be. If we’re re-unitizing a vector, we suspect that the vector we’re working with is already
somewhere near a length of 1.0, so an initial guess of 1.0 will typically work very well. In this
situation, four iterations or so usually gets you a value as accurate as you need.

What if we’re trying to convert a random vector into a unit vector, or just taking the square root of a
number out of the blue? In this case, we can’t be sure that 1.0 will be a very good guess. Here are a
few things you can do:

1. If you have easy access to the floating point number’s exponent, halve it. The square root
of A x 2M is SQRT(M) x 2M/2. Using A x 2M/2 is a really good first approximation.

2. If you are taking the length of a vector (x,y,z), abs(x)+abs(y)+abs(z) won’t be off by more
than a factor of 2 - also a good start.

3. It turns out that the operation will converge faster if the initial guess is higher than the real
answer. If all else fails, using N/2 will converge pretty quickly.

Don’t go crazy trying to get a good first guess. Things will converge fast enough even if you’re
somewhat off that a fast guess and an extra iteration may be faster than taking extra time to refine your
guess.

If You Don’t Like Newton...

If you’re looking for a really accurate answer, Newton’s method may not be for you. First, you can’t,
in general, just iterate a fixed number of times. Rather, you have to check to see if the last two
iterations differ by less than a threshold, which adds calculation time to each iteration. If you’re in
fixed-point land, the assumption we made earlier that multiplications were cheap may not be the case.
In this case, there is an alternate closed-form algorithm you can use that will result in the “exact”
answer in a predefined amount of time. This algorithm also uses an incremental approach to the
calculation.

Since (x + a)2 = x2 + 2xa + a2, we can iterate from x2 to (x+a)2 by adding 2xa + a2 to our working sum.
If a is2N, however, this translates into adding 2N+1 x + 22N. Since we can multiply by 2N by shifting to
the left by N bits, we can take a square root by use of shifts and subtractions. To take the square root
of a 32-bit number, for example, this results in an algorithm that looks something like this:

remainder = valueSquared;
answer = 0;
for (iteration = N; iteration >= 0; iteration--)
{

if (remainder >= (answer << iteration+1) + (1 << iteration * 2))
{

remainder -= (answer << iteration+1) + (1 << iteration * 2);
answer += 1 << iteration;

}

}

A “real” algorithm won’t repeatedly perform the shifts on the 5th line. Rather, an incremental
approach can be taken in which the answer and “1 bit” is kept in pre-shifted form and shifted to the
right as the algorithm proceeds. With appropriate temporary variable space, this algorithm shifts two
values and does two subtractions and either one or zero add or “or” per iteration, and uses one iteration
for each two bits in the original value.

This algorithm can be used very effectively on integer values, and can also be adapted to take the
square root of the mantissa portion of a floating-point number. In the latter case, care has to be taken
to adjust the number into a form in which the exponent is even before the mantissa square root is taken,
or the answer won’t be correct.

Table It
If you don’t need absolute precision, there is a table-driven square root algorithm that you can use as
well. The code for the 32-bit FP format (“float”) is in Graphics Gems, and the 64-bit FP format
(“double”) is in Graphics Gems III. The source code is online at
ftp:://Princeton.edu/pub/Graphics/GraphicsGems. (Note the capital ‘G’. There is also a /pub/graphics
(small ‘g’) which is not what you want...)

The way this algorithm works is to reach inside the IEEE floating point format. It checks the exponent
to see if it is odd or even, modifies the mantissa appropriately for odd exponents, and then halves the
exponent. The mantissa is then converted to a table lookup with a shift and mask operation, and the
new mantissa found in a table. The version in Graphics Gems III is set up to allow you to adjust the
size of the lookup table, and thus the accuracy of the operation.

Whether or not this method is appropriate for you depends on your tolerance for accuracy vs. table size
tradeoffs. The algorithm runs in constant time, like the previous one, which is an advantage in many
situations. It’s also possible to combine them, using a table lookup to get the first N bit guess, and then
finishing it out using the bit shifting approach above.

Trig Functions
Unfortunately, trig functions like sine and cosine don’t lend themselves nicely to methods like the
square root algorithms above. One of the reasons for this is that sine and cosine are interrelated. If
you try to use Newton’s method to find a cosine, you need to know the sine for your guess. But to
figure out the sine, you need cosine. Department of Redundancy Department.

One alternate approach you can take is to use a Taylor series. A Taylor series is a polynomial that will
approximate a sine or cosine to any desired accuracy. The problem with this is that the Taylor series
for sine and cosine don’t converge really quickly. They don’t do too bad, but you still have to do a
bunch of computation.

A better approach in this case is probably to use a combination of computation and a look-up table,
like the last square root algorithm. Since sine and cosine are cyclic, and interrelated, you only really
need to be able to calculate one of them over the range 0 - p/2. Given this, the rest of the values can be
determined. Depending on how much calculation you want to do, how much table space you want to
spend, and how accurate your answer needs to be, you can break up the region above into a fixed
number of regions, and use some form of interpolation between points. If you’re in Floating Point

land, over a relatively short region, you can fit a quadratic or cubic function to either the sine or cosine
function with pretty good accuracy. This gives you a second or third order polynomial to evaluate and
a little bit of table lookup overhead. For all but the lowest accuracy cases, this will probably net out
faster than calculating the number of Taylor terms you’d need.

If you’re in Fixed Point Land, you may be better off with a table lookup and linear interpolation, rather
than using a higher-order polynomial. For comparable accuracy, this approach will probably need
more table space, but if you’re avoiding floating point, you’ll probably be avoiding integer
multiplications as well. (Particularly because you have the decimal point adjustments to worry about).
The linear interpolation can be reduced to a single multiply by storing delta information in the table, so
all you have to do is multiply the bits you stripped off while building the table index (the “fractional
part” by this delta value and add it to the table entry.

One trick you can use in either case to make your table lookups easier is to measure your angles in 216
units rather than radians or degrees. 216 units basically consist of the following mapping:

Degrees Radians 216 units
0 0 0
45 p/4 0x2000
90 p/2 0x4000
180 p 0x8000
270 3p/2 0xC000
359.999 2p-e 0xFFFF
The neat thing about this set of units is that they wrap just the way that radians do (and degrees
are supposed to). They give you resolution of about 0.005 degrees, and they make table
lookups very easy, since you can shift-and-mask them down into table indices very easily.

Interestingly enough, this is something I’d devised for myself late last year (feeling very proud of
myself) only to see the technique published in Embedded Systems a month or so later. Just goes to
show you...

2 Polygon drawing on a raster display in two dimensions

The second main problem is to display a filled polygon on a screen. We will discuss that problem here.
First, let us approach the 2d polygon.

We will define a polygon as a set of points linked by segments, with a defined inner region and outer
region. The inner region need not be in a single piece.

Our rule for determining if a point is in a given region is to draw a line from infinity to that point. If
that line crosses an odd number of segments (edges), the point is within the polygon. Otherwise it is
not.

µ §
Figure 4

Drawing a line from infinity to any of the gray areas of the star will cross an odd number of edges. In
the white areas, it will cross an even number of edges. Try it.

µ §
Figure 5

The polygon shown in a, b and c are all the same. In a, the inner region has been shaded, but this has
been omitted in b and c for clarity.

The polygon shown in a can be listed as vectors, as in b or c. Let us agree that both versions are
equally satisfying. In b we enumerated the edges in a counterclockwise continuous fashion, meaning
that the head of each vector points to the tail of another. In c, we made each vector point generally
downward, or more strictly, each vector's topmost point is its tail. These vector are noted (a,b)-(c,d)
where (a,b) is the location of the tail of the vector, and (c,d) is the location of the head (arrow) of the
vector. In diagram c, for all vectors d<b (or b>d, either way). (Note, we will see what to do with b=d
later. That being a special case, we will not discuss it now).

As we are drawing on a screen (supposedly), it would be interesting to be able to color each pixel once
and only once, going in horizontal or vertical lines (as these are easy to compute). We will choose
horizontal lines for hardware reasons. Thus, we start scanning from infinitely upwards to infinitely
downwards using horizontal scanlines (e.g., the «first» scanline is way up, and the last is way down).
Now, our screen being finite, we need only to draw those lines that are on screen. At each pixel, we
will draw an imaginary line from the infinite to the left (horizontal line) to the current pixel. If it
crosses an odd number of edges, we color it. Otherwise, we don't.

This means that from infinite left to the first edge, we do not color. Then, from first edge to second
edge, we color. Then, from second edge to third edge, we do not color. From third edge to fourth edge,
we color. And so on. If you want, you can always draw a background bitmap left from the first edge,
from second edge to third edge, etc.... Thus, you could put the picture of a beautiful blue sky behind at
the same time you're drawing a polygon.

Now, let's start that over again. We are coming from infinitely upward and drawing. We do not need to
consider every edge, only those that are on the current scanline (horizontal line). We will thus build an
inactive edge list (those edges that have not yet been used in the drawing process) and an active edge
list (those edges that are currently in use to draw the polygon, i.e. that intercept the current scanline).
Thus, at first, all edges (named m,n,o,p in figure 5) would be in the inactive edge.

As the algorithm reaches the topmost line of the polygon, any relevant edge will be transfered from the
inactive edge list to the active edge list. When an edge becomes unused (we're lower than the
lowermost scanline), we remove it from the active list and throw it to the dogs. (# grin #)

Now you will realize that at each scanline we have to check every edge in the inactive edge list to see
if we need to transfer them to the active edge list. To accelerate that, we can sort the inactive edge list
in decreasing order. Thus, the ordered list would become {m,p,n,o}. Then, we need only to check the
first vector at every scanline. Since they point downward, we need only to check the first point of it.

If you get any horizontal lines in the edge list, remove them from the list. Horizontal lines can be
identified easily as b=d. Proving that it works is left as an exercise (# muhaha! #).

The polygon drawing algorithm (scan-line algorithm).

I=inactive edges list, initially all edges
A=active edges list, initally empty

sort I with highest first endpoint first

for each scanline i starting from the top of the screen
does the first edge in I start at scan line i?

Yes, transfer all edges that should start now from I to A
find x value of all edges in A for current scanline (see the line algorithm below)
sort all edges in A with increasing x-intercept value (the thing we jest calculated)

previous_x_intercept<-leftmost pixel on screen
for all edges n in A, counting by two, do

draw background between previous_x_intercept and edge n in A
fill polygon between edge n and edge n+1 in A
previous_x_intercept<-x intercept of edge n+1

end for

draw background for the rest of the scan line (from previous_x_intercept to end of line)
for all edges for which we have reached the bottom

remove the edge from A
end for

end for

2.1 A line algorithm for the polygon drawing algorithm

This section discusses a somewhat shortened version of Bresenham's line drawing algorithm. It is
optimized for drawing filled polygons.

You assuredly realize you need to calculate the x coordinate of the intersection of a line with an

horizontal line. Well consider the line equation that follows:

x=dy/dx x y + k

If the line is defined with the vector (a,b)-(c,d), then we define dy as d-b, dx as c-a. Say x0 is the x
coordinate of the topmost point of the segment.

x0=a

Say xn is the x intercept value of the segment for the nth line from the top. Then, xn can be defined as
follows:

xn=dy/dx x n + a

Say we know xn-1 and want to know xn based on that knowledge. Well it is obvious that:

xn-x(n-1)=dy/dx x n + a - [dy/dx x (n-1) + a]
xn-x(n-1)=dy/dx
xn=dy/dx+x(n-1)

Thus, knowing xn-1 and adding dy/dx yields xn. We can thus do an addition instead of a multiply and
an add to calculate the new x intercept value of a line at each scanline. An addition been at least 5
times as fast as an add, usually more in the 15 times range, this will speed things up considerably.
However, it might annoy us to use floating point or fixed point, even more so with roundoff error.

To this end, we have found a solution. dy/dx can be expressed as a+b/d, b<d. a is the integer part of
dy/dx. Substituting, we find that

xn=a+b/d+xn-1

Thus, we always add a at each scanline. Furthermore, when we add a sufficient amount of b/d, we will
add one more to xn. We will keep a running total of the fraction part. We will keep the denominator in
mind, and set the initial numerator (when n=0) to 0. Then, at each line we increase the numerator by b.
If it becomes greater than d, we add one to xn and decrease the numerator by d. In short, in
pseudocode, we draw a segment from (x0,y0) to (x1,y1) this way:

dx=x1-x0
dy=y1-y0
denominator=dy
numerator=dx modulo dy
add=dx divided (integer) dy
running=0
x=x0
for each line (0 to n) do

x=x+add
running=running+numerator
if running>=denominator then

running=numerator-denominator

x=x+1
end if
do whatever you want with line here, such as drawing a pixel at location (x,line)

next line

3 3d polygon drawing

The first step is to realize that a projected 3d line with our given projection becomes a 2d line, that is it
stays straight and does not bend. That can be easily proved. The simplest proof is the geometric one:
the intersection of two planes in 3d is a line in the general case. The projector all lie in the plane
formed by the origin ant the line to be projected, and the projection plane is, well, a plane. Thus, the
projection is contained in a line.

This means that all the boundaries of a polygon can be projected as simple lines. Only their endpoints
need be projected. Then, you can simply draw a line between the two endpoints of each projected edge
(or more precisely, draw a 2d polygon with the given endpoints).

However, there comes the problem of overlapping polygons. Obviously, the color of a pixel must be
that of the closest polygon in that point (well for our objective, that suffices). But this means that we
must determine the distance of each polygon that has the possibility to be drawn in the current pixel,
and that for the whole image. That can be time consuming.

We will make a few assumptions. First, we will assume no polygons are interpenetrating; this means
that to come in front of another polygon, a polygon must go around it. This means that you only need
to determine what polygon is topmost when you cross an edge.

Less obviously, but equally useful, if from one scanline to the next, you encounter the same edges in
the same order when considering left to right, you do not need to recalculate the priorities as it has not
changed.

Inevitably, though, you will need to determine the depth of the polygon (z value) in a given pixel. That
can be done rather easily if you carry with the polygon its plane equation in the form Ax+By+Cz+D=0.
Remember that the projection ray equation for pixel (u,v) is x=zu and y=zv. Feed that x and y in the
plane equation and you find that

Azu+Bzv+Cz+D=0
z(Au+Bv+C)=-D
z=-D/(Au+Bv+C)

Thus you can easily calculate the z coordinate for any plane in a given (u,v) pixel.

The cautious reader will have noticed that it is useful to do some of these multiplications and additions
incrementally from scanline to scanline. Also note that if Au+Bv+C equals zero, you cannot find z
unless D is also zero. These (u,v) coordinates correspond to the escape line of the plane of the polygon
(you can picture it as the line of «horizon» for the given plane). The projection ray is parallel to the
plane, thus you never cross it.

This brings me to another very important thing about planes. Another way to define a plane is to give a
normal vector. A vector and a point of reference generate one and only one plane perpendicular to the
vector and passing through the point of reference. Think of a plane. Think of a vector sticking up
perpendicular to it. That vector is called normal to the plane. It can be easily proved that this vector is
(A,B,C) with A,B,C being the coefficients of the plane equation Ax+By+Cz=D. We might want to
normalize the vector (A,B,C) (make it length 1), or divide it by SQRT(A2+B2+C2). But to keep the
equation the same, we must divide all member by that value. The equation thus becomes
A'x+B'y+C'z=D'. If we want to measure the distance perpendicularly to the plane of a point (a,b,c), it
can be shown that this (signed) distance is A'a+B'b+C'c+D' (you can always take the absolute value of
it if you want an unsigned distance). That might be useful for different reasons.

It is also notable that since the A, B and C coefficients are also the coords of the normal vector, and
that rotating a vector can be done as we saw previously, it is easy to rotate the plane. If the vector is
normalized in the first place, it will stay normalized after rotation. After rotation, you will ignore the D
component of the plane, but you do know the coordinates of a point in the rotated plane. Any point in
the polygon will fit the bill. Thus, you can deduce D. In fact, when performing back-face culling (see
chapter 4), you will calculate D even as you are performing some optimization.

Normally, you will build an inactive edge table (IET) in which you will store all edges of all polygons
to be rendered. Also initialize an empty list called the active edge table (AET). In the IET, make sure
that the edges are sorted in increasing values of y for the topmost endpoint of any edge. Also, as per
the 2d polygon drawing algorithm, discard any horizontal edge.

As you scan from the top of the screen to the bottom of the screen, move the edges from the IET to the
AET when you encounter them. You do not need to check every edge in the IET as they are sorted in
increasing y order, thus you need only to check the first edge on the IET.

As you are scanning from left to right, each time you cross an edge, you toggle the associated polys on
or off. That is, if poly X is currently "off", it means you are not inside poly X. Then, as you cross an
edge that happens to be one of poly X's edge, turn it "on". Of all polys that are "on", draw the topmost
only. If polys are not self-intersecting, you only need to recalculate which one's on top when you cross
edges. Your edge lists must contain pointers to thir parent polygons. Here's a pseudo-code for the
algorithm:

Let polylist be the list of all poly
Put all edges of all polygon in IET
Empty AET
for Y varying from the topmost scanline to the last

while the edge on top of the IET's topmost endpoint's Y coodrinate equals Y do
take the edge off the IET and insert it in the AET with an insertion sort

so that all edges in the AET are in increasing X values.
end_while

discard any edge in AET for which the second endpoint's Y value is Y

previous_X=minus infinity
current_poly=none
for i=first edge through last edge in AET

for X varying from previous_X to i's X coordinate
draw a pixel at position (X,Y), attribute is taken from current_poly

end_for
toggle polygons that are parent to i
current_poly=find_topmost_poly()

end_for

update intercept values of all edges in AET and sort them by increasing X intercept
end_for

A recent uproar about "s-buffers" made me explain this algorithm a little more carefully. Paul Nettle
wrote a FAQ explaining something that he calls "s-buffering". It is essentially an algorithm where,
instead of calculating the spans on the fly as above, you buffer them, that is, you precalculate all spans
and send them to a span buffer. Then you give the span buffer to a very simple rasterizing function. It's
a bit harder to take advantage of coherence in that case (an example of coherence is when we note that
if the order of the edges do not change from one scanline to the next, we don't need to recalculate
which spans are topmost, assuming polygons aren't interpenetrating).

Another very nice algorithm is the z-buffer algorithm, discussed later. It allows interpenetrating
polygon and permits mixing rendering techniques in a rather efficient way (for real-time rendering
purposes).

4 Data Structures

A very important aspect of 3d graphics is data structures. It can speed up calculations by a factor of 6
and up, only if we put some restriction on what can be represented as 3d entities.

Suppose that everything we have in the 3d world are closed polyhedras (no self-crossing(s)!). Each
polyhedra is constituted of several polygons. We will need each polygon's normal and vertexes. But
how we list these is where we can improve speed.

It can be proved that each edge is shared by exactly two polygons in a closed polyhedra. Thus, if we
list the edges twice, once in each polygon, we will do the transformations twice, and it will take twice
as long.

To that, add that each vertex is part of at least 3 points, without maximum. If you list each point in
every vertex it is part of, you will do the transformations at least thrice, which means it will take thrice
the time. Three times two is six. You're doing the same transformations at least six times over.

Thus, you need to list the vertexes in every polygon as pointers to vertexes. This way, two polygons
can share the same data for a shared vertex, and will allow you to do the transformations only once.

The same goes for edges, list the endpoints as pointers to endpoints, thus you will spare yourself much
runtime work.

Another interesting thing. All polygons have an interior and exterior face in that model. Make it so that
the normal to all polygons point towards the exterior face. It is clear that, if you are standing outside all
objects, and all objects (polyhedra) are closed, you cannot see an inside face. If, when transforming
polygons, you realize a polygon is facing away from the eye, you do not to transform it, just skip it. To
know if it's pointing away from you do the following:

This is called back-face culling. Take the (a,b,c) vector from the eye to any one endpoint of the
polygon. (E.g., if the eye is at (m,n,o) and a vertex of the poly is at (i,j,k), then the said vector would
be (i-m,j-n,k-o).) Take also (u,v,w) the normal vector to the polygon. No matter what direction you are
looking, do the following operation:

au+bv+cw

If the result is positive, then it is facing away from you. If it is negative, it is facing towards you. If it is
null, it is parallel to you. The operation is called scalar multiply of two vectors. It is very notable that
the above scalar multiplication of two vectors is interestingly enough the D part of the plane equation
Ax+By+Cz=D.

You can also illuminate objects with a very distant light source (e.g. the sun) very easily. Take the
vector pointing away from the light source (a,b,c) and the normal of the plane (u,v,w). Do a scalar
multiplication of both as above. The result can be interpreted as the intensity of the lighting or shadow
for the polygon. The approximation is good enough to give interesting results. You might also want to
affect the shading of the polygon according to its distance to origin, to yield a fog result.

5 Texture mapping

What we are about to do would probably be more aptly named pixmap mapping onto a plane. We want
to take a pixmap (or bitmap, although less appropriate a word, it is very popular) and «stick» it to the
surface of a polygon, cutting away any excess. The result can be quite impressive. This, however, can
be a painfully slow operation. We will discuss here of the mathematics involved, and after that, we will
try to optimize them.

Let's give a polygon its own coordinate system, (i,j). Thus, all points on the said polygon can be
localized in (i,j), or (x,y,z), or, once projected, in (u,v).

µ §
Figure 6

Figure 6 illustrates the problem. The blue plane is the projection plane. The green triangle is a polygon
we are projecting on that plane and then scan-converting in (u,v) coordinates. What we want to do is
find, what (i,j) point corresponds to any given (u,v) point when projected this way. Then, the point (i,j)
can be indexed in a pixmap to see what color this pixel in (u,v) space should be.

Let the i and j vectors be expressed in (x,y,z) coordinates, which they should normally be. We want a
general solution.

i=(a,b,c)
j=(d,e,f)

Let also the origin of (i,j) space be pointed to in (x,y,z) by the vector k=(m,n,o). Thus, a point at
location (p,q) in (i,j) space is the same as a point at location pi+qj+k in (x,y,z) space. Furthermore, we
have the projection ray defined as follow: it shoots through point (r,s) in (u,v) space. This corresponds
to point (r,s,1) in (x,y,z) space. The equation of that ray is thus t(r,s,1) where t can take any real value.
Simplifying, we find that the ray is (tr,ts,t), or

x=tr
R: y=ts

z=t

or
x=zr

R: y=zs
z=z

The point in the plane is

x=pa+qd+m (1)
P: y=pb+qe+n (2)

z=pc+qf+o (3)

We want to find (p,q) as a function of (r,s). Here is what i did in stupid MathCAD. [MathCAD flame
deleted] I'm sorry I didn't use the same variable names in MathCAD...

#######Begin picture of mathcad screen#########

########End picture of mathcad screen#########

These equations for p and q can be optimized slightly for computers. Since it is usually faster on a
computer to do a(b+c) than ab+ac, and that both are equivalent, we will try to factorize a little.

p=(Mv+Nu+O)/(Pv+Qu+R)
where M,N,O,P,Q,R are as follows:
M=CXq-AZq
N=BZq-CYq
O=AYq-BXq
P=ZqXp-ZpXq
Q=YqZp-YpZq
R=YpXq-YqXp

They are all constants, so they need only to be calculated once to draw the whole image.

Similarly for q, we have:
q=(Sv+Tu+U)/(Vv+Wu+X)
and
S=AZp-CXp
T=CYp-BZp
U=BXp-AYp
V=ZqXp-ZpXq
W=YQZP-YPZQ
X=YqXp-YpXq

All these constants should be calculated only once. Now we can simplify a little with, knowing that
P=V, Q=W, R=X.

p=(Mv+Nu+O)/(Pv+Qu+R)
q=(Sv+Tu+U)/(Pv+Qu+R)

This is noteworthy: (Q,P,R)(u,v,1)=uQ+vP+R, the denominator. But,
(Q,P,R)=(Xq,Yq,Zq)x(Xp,Yp,Zp). This cross-product of two vectors will yield a vector that is
perpendicular to the first two (i.e. a normal to the plane). If these two vectors are of length 1, then the
cross product will also be of length 1. But we might already have the normal from previous
transformations (e.g. if we're doing back-face culling). Then, we won't need to calculate (Q,P,R) as it
is the normal to the plane. Or we can deduce the normal from these equations if we don't have it.

The denominator needs to be calculated only once per pixel, not for both p and q. The numerator for p
and q is different, though. Furthermore, It is obvious that Mv+O are constant throughout a constant-v
line (horizontal line). Thus, it needs to be calculated only once per line. We can spare ourselves the
multiply per pixel doing it incrementally. (We're still stuck with a divide, though.) Example, let
V=Mv+O, for a given v. Then, when calculating Mv+Nu+O, we can use V+Nu. If we know V+Nua,
then we can calculate V+N(ua+1) as follow: V+Nua+N

Let W=V+Nua, then we get

W+N

That's a simple add instead of a multiply. But we can not get rid of the divide, so we're stuck with a
divide per pixel (and at least two adds) per coordinate.

There is a way to solve this, however, and here's how to do it.

First, it is interesting to note the following. The plane equation is Ax+By+Cz=D, and x=zu, y=zv,
where (u,v) is the screen coordinates of a point, and (x,y,z) is the corresponding world coordinate of
the unprojected point. Thus,

Auz+Bvz+Cz=D

What happens when z is a constant? Let us express v as a function of u.

Bvz=-Auz-Cz+D
v=(-A/B)u+(-C/B)+D/(Bz)

Let M=-A/B, and N=d/(Bz)-C/B then we have

u=Mv+N

a linear equation. Furthermore, M is independant of z. Thus, a slice of constant z in the plane is
projected as a line on (u,v). All of these slices project in lines that are all parallel to each other (e.g. the
slope, M, is independant of the slice taken).

Now, a slice of constant z in the original Ax+By+Cz=D plane is a line. Since z is constant throughout
that line, all points of that line are divided by the same number, independantly of (x,y). Thus, the
projected line is merely the original line scaled up or down.

Up to now, we have been rendering polygons with a scanline algorithm where the scanlines are
horizontal. First, we have to conceive that the scanlines need not be horizontal, merely parallel. If we
use a slope of M for the scanlines (M=-A/B, as above), then we will be performing scans of constant z
value. Two advantages are very obvious. First, it is easy to calculate the z value for a large number of
pixel (it is constant throughout a scanline) and second, texture mapping the scanline becomes a mere
scaling operation, which can be done incrementally. Furthermore, M need be calculated only once for
the whole polygon, while N requires at most a divide and an add per scanline.

Note that if abs(A)>abs(B), you might want to express v as a function of u instead of the above, so that

the slope ends up as being -B/A instead. (E.g., make certain that the slope is less than or equal to 1 in
absolute value). There is a degenerate case: A=B=0. This is the case where the whole plane is of
constant z value. In that case, you can use horizontal scan lines and just scale the texture by a factor of
1/z.

Thus, we're going to be rasterizing the polygon with nonhorizontal scanlines of slope M. The equation
of a scanline can be expressed as:

v=Mu+Vi

Where Vi is the v coordinate when u is 0. All scanlines being parallel, M never changes, and Vi
identifies uniquely each and every scanline. Say i=0 corresponds to the topmost scanline. Say we want
to find the intersection of the scanline with a polygon edge. What we're really interested in is the u
value of the intersection of the two lines. The edge can be represented as being:

v=Nu+K

Where K is the v value for the edge when u=0. Now, intersecting the two yields

Nu+K=Mu+Vi
(N-M)u=(Vi-K)
u=(Vi-K)/(N-M)

That is, assuming N-M is not zero, which shouldn't be because we're not including edges parallel to the
scanlines in our scan line algorithm, thus N-M is never zero.

Now, V(i+1) is (Vi)+1. When we go from scanline i to scanline i+1, V is incremented by one. We thus
get u', the intersection of the two lines for the next scanline, as being:

u'=(Vi+1-K)/(N-M)
u'=(Vi-K)/(N-M)+1/(N-M)
u'=u+1/(N-M)

It is thus possible to calculate u from scanline to scanline incrementally, bresenham stlye. To clarify
things up a bit: if P1 and P2 delimit the edge, then let (p,q) be P2 minus P1 (that is, p is the delta u and
q is the delta v). Therefore, N is q/p (by definition of slope). Now, we know M to be of the form -B/A
(from the plane equation, above). We need to calculate N-M for our incremental calculations, which is
relatively easy. We have

N-M=q/p-(-A/B)
N-M=q/p+A/B
N-M=(qB+Ap)/(Bp)

Thus, u' is really:
u'=u+Bp/(qB+Ap)

At one point in the algorithm, we will need to calculate which scanline contains a particular point. As
an example, when sorting from topmost edge downwards, we need to use a definition of top that is

perpendicular to the scanline used. Then, we have the slope of the scanline, which is, say, m. If the
equation of the line that interests us is:

y=mx+b

Then, we can sort the edges according to increasing b values in the above equation. If we want to
calculate b for point (i,j), simply isolate b in the above equation.

This last bit is called constant-z texture mapping. It is not particularly useful in the general case, for a
number of reasons, mainly added aliasing, and span generation problems. However, it has a very well
known and very used application. If we have vertical walls and horizontal floors exclusively, and that
the eye is never banked, then the following is always true: the constant-z lines are always either
horizontal or vertical. For example, the walls' constant-z lines are vertical while the floors' and ceilings'
are horizontal. So basically, you can render floors and walls using the techniques described in this
chapter in a very straightforward manner, if you use both horizontal and vertical scanlines. Just use the
last bit about constant-z texture mapping and optimize it for horizontal and vertical scanlines. It is to
note that looking up or down will not affect the fact that walls will have vertical scan-lines and floors
and ceilings will have horizontal scan-lines.

6 Of logarithms

If we have many multiplies or divides to make, little time and lots of memory, and that absolute
precision is not utterly necessary, we may use the following tricks.

Assuming x and y are positive or null real numbers, and b a base for a logarithm, we can do the
following: (note: x**y means x raised to the yth power, logby denotes base b logarithm of y).

logb(xy)=logbx+logby
b**logb(xy)=b**(logbx+logby)
xy=b**(logbx+logby)

Now, you might say that taking the log or the power of a value is very time consuming, and it usually
is. However, we will reuse the trick that we used to do not so long ago, when pocket computers were
not available, we will make a logarithm table. It is easy to store the values of all possible logaritms
within a finite, discrete range. As an example, if we are using 16 bit fixed points or integer, we can
store the result of a log of that number as a table with 65536 entries. If each entry is 32 bits wide,
which should be sufficient, the resulting table will use 256kb of memory. As for the power table, you

can build another lookup table using only the 16 most significant bits of the logarithm, yielding a 16 or
32 bit wide integer or fixed point. This will yield a 128 to 256kb table, for a grand total of under
512kb. With today's machines, that should not be a problem. The only problem is that you must then
limit your scope to 16 bits numbers. You realize of course that you can not multiply if one or both of
the numbers are negative. Well, you can do it this way. Say x<0, then let u=-x, thus u>0. Then, xy=-
uy, and uy you can calculate with this method. Similarly,

x/y=b**(logbx-logby)

Thus divides are also a simple matter of looking it up in the table and subtracting.

Powers are made much more simple also. I won't say anything long winded about powers, but here is,
in short:

logb(x**y)=y logbx
x**y=b**(y logbx) (*)
And from there, even better yet:
x**y=b** (b** [logby+logb(logbx)])

For y=constant, some shortcuts are usually possible. Since ax can sometimes be very quickly
calculated with left shifts, you can use (*) instead of the last equation. Very common example:
320y=(256+64)y
320y=256y+64y
320y=(y<<8)+(y<<6)

Where x<<y denotes "x, left shifted y times". A left shift of y is equivalent of multiplying by 2**y.
The ancient egyptians only knew how to multiply this way (at least, as far as I know, for a while, like
for the pyramids and stuff - I think they even calculated an approximation of pi during that time, and
they couldn't even multiply efficiently! :-)

7 More on data structures and clipping

Usually, the space viewed by the eye can be defined by a very high square-based pyramid. Normally, it
has no bottom, but in this case it might have one for practical purposes. Let us say that the eye has a
width of vision (horizontally and vertically) of 90 degrees. (Since it is square, that angle is slightly
larger when taken from one corner to the opposite.) Thus, we will see 45° to both sides, up and down.
This means a slope of one. The planes bounding that volume can be defined as x<z, x>-z, y<z and y>-
z. To a programmer with an eye for this, it means that it easy to «clip», i.e. remove obviously hidden
polygons, with these bounds. All polygons that do not satisfy either of these inequalities can be

discarded. Note that these polygons must fall totally outside the bounding volume. This is called trivial
rejection.

For polygons that are partially inside, partially outside that region, you may or may not want to clip (I
am not sure yet of which is more efficient - I suspect it depends on the situation, i.e. number of
polygons, number of edges in each polygon...)

There is also a slight problem with polygons that are partially behind, partially in front of the eye. Let
us give a little proof. All of our polygon-drawing schemes are based on the assumption that a projected
line is also a line. Here is the proof of that.

Let us consider the arbitrary line L, not parallel to the plane z=0, defined parametrically as:
x= at+b

L: y= ct+d
z= t

Now, let us define the projection P(x,y,z) as follows:

P(x,y,z): u=x/z
v=y/z

Then, P(L) becomes

P(L): u=(at+b)/t
v=(ct+d)/t

We are using a segment here, not an infinite line. If no point with t=0 needs to be projected, we can
simplify:

P(L): u=a+b/t
v=c+d/t

Let us measure the slope of that projection:

du/dv=(du/dt) / (dv/dt) = (-b/t2)/(-d/t2)

Since t is not 0

du/dv=b/d, a constant, thus the parametric curve defined by P(L) is a straight line if t is not zero.

However, if t is null, the result is indeterminate. We can try to find the limits, which are pretty
obvious. When t tends towards zero+, then u will tend towards positive (or negative if b is negative)
infinity. If t tends towards zero-, then u will tend towards negative (or positive, if b is negative)
infinity. Thus, the line escapes to one infinity and comes back from the other if t can get a zero value.
This means that if the segment crosses the plane z=0, the projection is not a line per se.

However, if the line is parallel to z=0, L can be defined as follows:
x=at+b

L: y=ct+d
z=k

Where k is the plane that contains L. P(L) becomes

P(L): u=(at+b)/k
v=(ct+d)/k

The equations do not admit a null k. For a non-null k, we can find the slope:

du/dv = (du/dt)/(dv/dt) = (a/k)/(c/k)
du/dv=a/c

Still a constant, thus P(L) is a line. However, if k is null, we do not get a projection. As k gets close to
zero, we find that the projection lies entirely at infinity, except for the special case b=d=0, which is an
indetermination.

This will have a practical impact on our 3d models. If a cube is centered on the eye, it will be distorted
unless we somehow take that into consideration. The best way to do it, with little compromise and
efficient coding, is to remove all parts of polygons that lie in the volume defined by z<=0. Of course, if
an edge spans both sides of the plane z=0, you will have to cut it at z=0, excluding everything defined
by z<=0. Thus, you will have to make sure the point of the edge with the smaller z coordinate is
strictly greater than 0. Normally, you would have to take the next higher real number (whatever that
might be!) but due to hardware contraints, we will use any arbitrarily small number, such as z=.001 or
even z=.1 if you are building a real-time something in which infinite precision is not required.

Lastly, you might not want to render objects that are very far away, as they may have very little impact
on the global scene, or because you are using a lookup table for logarithms and you want to make sure
that all values are within range. Thus, you will set an arbitrary maximum z for all objects. It might
even be a fuzzy maximum z, such as «I don't wand any object to be centered past z0». Thus, some
objects may have some part farther than z0, but that may be more efficient than the actual clipping of
the objects.

Moreover, you might want to make several polygon representations of the objects, with different levels
of details as measured by the number of polygons, edges and vertices, and show the less detailed ones
at greater distances. Obviously, you would not normally need to rasterize 10 polygons for an object
that will occupy a single pixel, unless you are doing precision rendering. (But then, in that case, you'll
have to change the whole algorithm...)

You may want to perform your trivial rejection clipping quickly by first rotating the handle coordinates
of each polyehdra (the handle coordinate is the coordinate of its local coordinates' origin), and
performing trivial rejection on them. As an example, if you determine that all of a polyhedra is
contained within a sphere of radius r, and that this polyhedra is «centered» at z=-3r, then it is obvious
that it is entirely outside the view volume.

Normally, the view volume is exactly one sixth of the total viewable volume (if you do not take into
account the bottom of the pyramid). Thus, you will statistically eliminate five sixths of all displayable
polyhedras with such a clipping algorithm.

Let's make a brief review of our speed improvements over the brute-force-transform-then-see-no-think
algorithm. We multiplied the speed by six with our structure of pointers to edges that point to vertexes.
Then, we multiply again by two (on average) with back-face culling, and now by six again. The overall
improvement is a factor of 72! This shows you how a little thinking pays. Note however that that last
number is a bit skewed because some operations do not take as long as some others, and also by the
fact that most polyhedra do not contain a nearly infinite amount of vertices.

We have not taken into account several optimizations we mentioned, such as the lessening of detail, a
bottom to the view volume and we did not compare with other kinds of algorithm. But another appeal
of this algorithm is that it draws once, and only once to each pixel, thus allowing us to superimpose
several polygons with minimal performance loss, or make complicated calculations for each pixel
knowing that we will not do it twice (or more!) for some pixels. Thus, this algorithm lends itself very
well to texture mapping (or more properly, pixmap mapping), shading or others.

However, we have to recognize that this approach is at best an approximation. Normally, we would
have to fire projection rays over the entire area covered by a pixel (an infinite number of rays), which
will usually amount to an integral, and we did not perform any kind of anti-aliasing (more on that
later), nor did we filter our signal, nor did we take curved or interpenetrating surfaces into account,
etc... But it lends itself very well to real-time applications.

8 A few more goodies...

Anti-aliasing is something we invented to let us decrease the contrast between very different pixels.
More properly, it should be considered an approximation of high frequencies in a continuous image
through intensity variations in the discrete view space. Thus, to reduce the stairway effect in a diagonal
line, we might want to put some gray pixels.

µ §
Figure 7

Figure 7 demonstrates this. This diagonal line a was «anti-aliased» manually (I hear the scientists
scream) in b, but it should let you understand the intention behind anti-aliasing.

Scientists use filters, and so will we, but I will not discuss fully the theory of filters. Let us see it that
way. We first generate a normal image, without any kind of anti-aliasing. Then we want to anti-aliase
it. What we do is take each pixel, modify it so it resembles its non-anti-aliased neighbors a little more
and show that on screen.

Let us further imagine that how we want to do that specifically is to take one eight of each of the four
surrounding pixel (north, south, east and west) and one half of the «real» pixel, and use the resulting

color for the output pixel.

If our image is generated using a 256-color palette, there comes a handy little trick. Let us imagine that
we want to take one half of color a and one half of color b and add them together. Well, there are 256
possible values for a. And for each single value of a, there are 256 values of b, for a total number of
256x256 pairs, or 64k pairs. We can precalculate the result of mixing one half a with one half b and
store it in a matrix 64kb large.

Now let us call the four surrounding pixels n,s,e,w and the central point o. If we use the above matrix
to mix n and s, we get a color A that is one half n plus one half s, that is A=n/2+s/2. Then, mix e and w
as B=e/2+w/2. Then, mix A and B. C=A/2+B/2=n/4+s/4+e/4+w/4. Lastly, mix C and o, and we get
D=o/2+n/8+s/8+e/8+w/8, the exact desired result. Now, this was all done through a lookup table, thus
was very fast. It can actually be done in real time.

Thus, if you want to do this, you will first create the original, un-anti-aliased image in a memory
buffer, and then copy that buffer as you anti-aliase it on screen. Obviously, it will be slower a little, but
you might want to consider the increased picture quality. However, you will probably want to do this
in assembler, because it can be highly optimized that way (most compilers get completely confused...)

Another very nice technique is this. For pixel (u,v) on screen, mix equal parts of pixels (u,v), (u+1,v),
(u,v+1), (u+1,v+1) in your rendering buffer. It's as if the screen was half a pixel of center in relation to
the rendering buffer. You'll need to render an extra row and column though.

It is also interesting to note that the silhouette of a projected sphere is a circle. The centre of the circle
is the projection of the centre of the sphere. However, the radius is NOT the projection of the radius of
the sphere. However, when the distance is large enough when compared to the radius of the sphere,
this approximation is good enough.

To determine if a point is contained inside a polyhedra, we extend our test from the polygons like this:
if a line drawn from the point to infinity crosses an odd number of faces, the it is contained, otherwise
it is not.

If you want to approximate a continuous spectrum with 256 colors (it will not look perfect though), use
base 6. That is, using the RGB model (we could use HSV or any other), you will say that red, green
and blue can all take 6 different values, for a total number of combinations of 216. If you add an extra
value to green or red, you get 252 colors, close to the maximum. However, 216 is not bad and it leaves
you 40 colors for system purposes, e.g. palette animations, specific color requirements for, let's say,
fonts and stuff. Under Microsoft Windows, 20 colors in the palette are already reserved by the system,
but you still have enough room for your 216 colors. By the way, I think it's stupid that MS Windows

does not allow you to do that as a standard palette allocation. You have to define your own video
driver to enable programs that limit themselves to dithering to use those colors. And that's living hell.

In addition, if the colors are arranged in a logical way, it will be easier to find the closest match of the
mix of two colors as per anti-aliasing, above. (A bit like cheaper 24 bit color.)

Some people give 8 values to red and green, and 4 values to blue, for a total of 256 colors, arguing that
shades of blue are perceived more difficultly. Personnally, I think the result is not as good as the base
six model I previously described.

Some other nice techniques: divide your palette in spans. Example, allocate palette registers 16-48 to
shades of blue. Use only registers 20-44 in your drawings, but arrange so that it goes from white-blue
at color #16 through black-blue at color #48. Then, shading is a simple matter of adding something to
make it darker, or subtracting to make it lighter. Make a few spans for your essential colors, and maybe
keep 30 for anti-aliasing colors. These should not be used in your pixmaps. They could be used only
when performing final anti-aliasing of the rendered picture. Pick these colors so to minimize visual
artifacts. (E.g. you have a blue span at 16-48, and a red span at 64-100. But you don't have any purple,
so if blue happens to sit next to red, anti-aliasing will be hard to achieve. Then, just a bunch of your
special 30 colors for shades of purple.) Another particular trick to increase the apparent number of
colors (or rather, decrease the artifacts created by too few colors), you could restrict your intensity to
lower values. E.g. make your darkest black/gray at 25% luminosity, and your lightest white at 75%.
This will make your graphics look washed out, but your 256 colors will be spread over a narrower
spectrum.

9 Sorting

Sorting becomes an important issue because we do it a lot in our 3d rendering process. We will discuss
here briefly two general sorting algoritmthms.

The first sort we will discuss is the bubble sort. It is called this way because the elements seem to
«float» into position as the sort progresses, with «lighter» elements floating up and «heavier» ones
sinking down. Given the set S, composed of elements s0, s1, ..., sn-1. This set has n elements. Let us
also suppose that we can compare two elements to know which of the two is «lighter», i.e. which one
goes first. Let us also suppose that we can exchange two consecutive elements in the set S. To sort the
set S, we will proceed as follow. Starting at element 0 up to element n-2, we will compare each
element to its successor and switch if necessary. If no switches are made, the set is sorted. Otherwise,
repeat the process. In pseudocode, we have:

repeat the following:
for i varying from 0 to n-2, repeat the following

if si should go after si+1, then exchange si and si+1
end of the loop

until no elements are switched in the for loop (i.e the set is sorted)

This algorithm, while very inefficient, is very easy to implement, and may be sufficient for relatively
small sets (n of about 15 or less). But we need a better algoritm for greater values of n.

However, we have to keep in mind that we are sorting values that are bounded; that is, these values
have a finite range, and it is indeed small, probably 16 bits or 32 bits. This will be of use later. But let
us introduce first the sort. It is called the radix sort.

Assume we are give a set S of numbers, all ranging from 0 to 9999 inclusively (finite range). If we can
sort all si according to the number in the ones' place, then in the tens' place, then in the hundreds' place,
then thousands' space, we will get a sorted list. To do this, we will make a stack for each of the 10
possible values a digit can take, then take each number in the S set and insert them in the appropriate
stack, first for the rightmost digit. Then, we will regroup the 10 stacks and start over again for the
second rightmost digit, etc... This can be done in pseudocode as follows:

divisor=1
while divisor<10000, do the following:

for i varying from 0 to n-1, do the following:
digit=(si divided (integer version) by divisor) modulo 10
put si on stack # digit

end of for loop
empty set S
for i varying from 0 to 9, do the following:

take stack # i and add it to set S
end of for loop
divisor=divisor x 10

end of while loop

Now, let us assume that we want to work with hexadecimal numbers. Thus, we will need 16 stacks. In
real life, what we want to sort is edges or something like that. If we limit ourselves to 16384 edges
(16k, 12 bits), then our stacks need to be able to fit 16384 objects each. We could implement them as
arrays and use lots of memory. A better way is to use lists.

One could also use the quicksort algorithm, which has a complexity of O(nxln(n)), which seems worse
than n for this particular problem. It is also a bit more tedious to code (in my humble opinion). In our
problem, we may not even need to sort for 16 bits. The only place that we need a powerful sorting
algorithm is when sorting all edges from top to bottom and from left to right. If we are certain that all
coordinates are bound between, say, 0 and 200 (e.g. for y coordinate), then we can sort on 8 bits. For
the x coordinate, though, depending if we already clipped or not, we may have to sort on the full 16

bits. When using the z-buffer algorithm (decribed scantily elsewhere), you want to do a z-sort, then
drawing the polygons that are on top FIRST so that you can avoid these nasty pixel writes.

10 Depth-field rendering and the Z-buffer algorithm

You can approximate any 3d function z=f(x,y) with a depth field, that is, a 2d matrix containing the z-
values of f(x,y). Thus, z=M[x][y]. Of course, if you want any precision at all, it has somewhat large
memory requirements. However, rendering this depth-field is fairly efficient and can give very
interesting results for smooth, round surfaces (like a hill range or something).

To render a depth field, find the vector V from our eye to the pixel in the projection plane in 3space.
Shoot a ray, as before, using that vector. Start at the eye and move in direction V a little. If you find
that you are still above the surface (depth field), then keep going (add another V and so on) until you
hit or fall under the surface. When that happens, color that pixel with the color of the surface. The
color of the surface can be stored in another matrix, C[x][y]. In pseudocode, we get:

M[x][y]=depth field
C[x][y]=color field
for each pixel to be rendered, do:

V=projection ray vector
P=Eye coordinates
while (M[Px][Py]<Pz)

P=P+V
end while
color the current pixel with C[Px][Py]
if we are using z-buffer algorithm, then set Z[Px][Py] to Pz (see below)

end for

Of course, you will want to break the loop when P is too far from origin (i.e. when you see that
nothing is close through that projection ray, stop checking).

For vector graphics, we were forced to place our eye centered on origin and looking towards positive z
values. That forced us to rotate everything else so the eye would be positioned correctly. Now,
obviously, we cannot rotate the whole depth field as it would be very time- and memory-consuming.
Instead, the eye now can be centered anywhere (the initial value for P need not be (0,0,0)) and the
vector V can be rotated into place. Even better, if we can find the vector W from the eye to the center
of the projection plane, and the two base vectors u and v in 3d for the projection plane, all of the other
vectors Vu,v wil be a linear combination of the form: V=W+au+bv where (a,b) is the coordinate of the
pixel in the (u,v) coodinates system. If we are doing this rendering with scan lines (as we most
probably are doing), then the above equation can be done incrementally, e.g. say Va,y=A, then
Va+1,y=A+u. No multiplications whatsoever.

The z coordinate of each pixel is readily available in the above algorithm and it has a use. Let us store
all the z coordinate values in a matrix Z[a][b]. If we then want to add a flat image with constant z value
(say z=k) to the already rendered scene, we can do it very easily by writing only to pixels for which
Z[a][b]>k. Thus, we can use another rendering technique along with depth-field rendering. This is
called the z-buffer algorithm. Accelerating calculations for the z-buffer with polygons, you might want
to remove the divide-per-pixel. That is fully discussed towards the end of the texture-mapping chapter.

A few optimizations are easily implemented. Let us assume we are drawing from the bottom of the
screen to the top, going in columns instead of rows. First, if you are not banked (or banked less than
the steepest slope, e.g. no «overhangs» are seen in the picture) and you have rendered pixel a. Then
you know how far pixel a is from you. Then, then next pixel up, pixel b, will be at least as far as pixel
a. Thus, you do not need to fire a ray starting from your eye to pixel b, you need only to start as far as
pixel a was. In fact, if you are not banked, you need only to move your Pz coordinate up a little and
keep going.

Therefore, if pixel a is determined to be a background pixel, so will all the pixels above it.

You might want to render all of you polygons and other entities using a z-buffer algorithm. As an
example, say you have 3 polygons, A, B and C, and a sphere S. You could tell your renderer to render
poly A, which it would do right away, filling the z-buffer at the same time. That is, for each screen
pixel that the buffer A covers, it would calculate the z-value of the polygon in that pixel, then check
with the z-buffer if it stands in front of whatever is already drawn. If so, it would draw the pixel and
store the polygon's z-value for that pixel in the z-buffer. Then render sphere S, which it would do right
away again, calculating the z-value for each pixel and displying only the visible pixels using the z-
buffer, and updating the z-buffer accordingly. Lastly polygons B and C would be displayed.

What you gain by using this algorithm instead of a scan line algorithm is obvious. Interpenetrating
polygons behave correctly, mixing rendering techniques is straightforward. There is but one annoying
thing: calculating the z value for a polygon in any point on the screen involves a division, hence a
division per pixel if using z-buffer. But we can do better.

We are not really interested in the z value of a polygon in a determined pixel, what we want really is to
know what is visible. To that purpose, we can obviously calculate z and show the object with the
smallest z value. Or we could evaluate z^2 and show the one with the smallest z^2 value. If we want
whatever has the smallest z value, this is the same as saying that we want whatever has the largest 1/z
value. Fortunately 1/z is way easier to calculate. Let the plane equation be Ax+By+Cz=D, and the
projection equations be u=x/z and v=y/z, or

Ax+By+Cz=D
x=uz
y=vz

or

A(uz)+B(vz+)Cz=D

or

z(Au+Bv+C)=D

(Au+Bv+C)/D=1/z

1/z= (A/D)u+(B/D)v+(C/D)

Let M=A/D (a constant), N=B/D (another constant) and K=C/D (a third constant), then

1/z=Mu+Nv+K

As we can see plainly, we don't have a divide. This is linear so can be calculated incrementally. E.g.
for a given scanline (v=k), the equation is

1/z=Mu+Nk+K

Let P=Nk+K (a constant)

1/z=Mu+P

A linear equation. When going from pixel u to pixel u+1, we just need to add M to the value of 1/z. A
single add per pixel.

There's also a double edged optimization that you can make, which follows.

Sort your polygons in generally increasing z order (of course, some polygons will have an overlap in z,
but that's everybody's problem with this algorithm - your solution is just as good as anybody else's.)
Now, you're scan-converting a polygon. If you can find a span (e.g. a part of the current scanline) for
which both ends are behind the same convex object, then that span is wholly hidden. As an example of
this, if both enpoints of the current span (on the scanline) are behind the same convex object, then the
current span is entirely hidden by that convex object. If all of your objects are convex polygons, then
you don't have to check for convexity of the object. Another interesting example is this:

If current span's left endpoint is hidden
let A be the object that hides the left endpoint (of the span)
if A hides the right endpoint

stop drawing the scanline
else

start drawing from the right end of the span, leftwards, until object A is in front of the
span

end if
else

if current span's right endpoint is hidden
let B be the object that hides the right endpoint
scan rightwards until object B is in front of the span

else
draw span normally

end if
end if

This can be applied also to polyhedras if they are convex. This last optimization should be relatively
benign (e.g. I expect a factor of two or some other constant from it).

11 Bitmap scaling and mixing rendering techniques

Another popular technique is called bitmap (or more properly pixmap) scaling. Say you are looking in
a parallel direction to the z axis, and you are looking at a picture with constant z. Through the
projection, you will realize that all that happens to it is that it is scaled by a constant factor of 1/z. That
is, if you look at a photograph lying in the plane z=2, it will look exactly the same (once projected) as
the same photograph at z=1, except that it will be twice as small. You could also do that with the
picture of a tree. From a great distance, the approximation will be fairly good. When you get closer,
you might realize that the tree looks flat as you move. But nonetheless, it can yield impressive results.
Bitmap scaling often suffices for ball-like objects. You could use it for an explosion, smoke, spherical
projectile, etc... The advantage of bitmap scaling is that it has only one point, probably it's center, to
transform (i.e, translate and rotate into place in 3d), and scaling it is very fast.

The advantages of such a technique are obvious. First, it is very easy to scale a pixmap by a given
factor. Second, the z value is a constant, thus it can easily be incorporated in the above z-buffer
algorithm with depth-field rendering for very nice results. However, it will be obvious to the careful
observer that you can not smoothly go around it, as it is always facing you the same way (i.e. you
cannot see the back door to a house if it is rendered this way, because, obviously, the bitmap being
scaled does not have a back door).

Moreover, the depth-field rendering technique blends quite smoothly with vector graphics. First,
render the depth field in a buffer B. Do a scan-line algorithm for the vector graphics, but with an added
twist: the «background» bitmap is B, and use the z-buffer algorithm to determine if a pixel in B lies in
front of the current polygon if any.

If you do decide to use depth-field rendering along with vector graphics, and you decide not to bank
your eye, then you can eliminate one full rotation from all calculations. E.g. if your eye is not banked,
you do not need to rotate around the z axis.

Scaling a bitmap can be done fairly easily this way. The transformation is like this: we want to take
every (u,v) point and send it into (u/s,v/s), where s is the scaling factor (s=2 means that we are halving
the size of the bitmap). The process is linear.

(i,j)=(u/s,v/s)
(is,js)=(u,v)

Thus, if we are at pixel (i,j) on screen, it corresponds to pixel (is,js) in the bitmap. This can also be
done incrementally. If un=A, then un+1=A+s. No multiplications are involved. Thus, if we are viewing
a bitmap at z=2 according to the above said 3d projections, then we can render it using a scan-line
algorithm with these equations and s=z=2.

If a bitmap has holes in it, we can precalculate continuous spans in it; e.g., in an O, drawing a scanline
through the center shows you that you are drawing two series of pixels. If you want the center to be
transparent (allow a background to show through), then you can divide each scanline of the O in two
spans, one left and one right, and render them as two separate bitmaps; e.g., break the O in (and)
parts, both of which have no holes. Note however that we have a multiplication at each beggining of a
span, so this might not be efficient. Or you could select a color number as being the «transparent»
color, and do a compare per pixel and not blit if it is the transparent color. Or you can allocate an extra
bitplane (a field of bit, one bit per pixel) where each bit is either 1 for opaque (draw this pixel) or 0 for
transparent (do not draw this pixel).

Partially translucid primitives can be rendered pretty easily. This is an old trick, you see. You can even
scavenge the lookup table you used for anti-aliasing. If you want to have a red glass on a part of the
screen, the lookup table will tell you how to redden a color. That is, the item #c in the lookup table
tells you what color is color c with a little red added. The lookup table need not be calculated on the
fly, of course. It can be calculated as part of your initialization or whatever.

12 About automatically generating correctly oriented normals to planes.

This bit is not meant to be a blindingly fast algorithm for region detection. It is assumed that these
calculations are made before we start generating pictures. Our objective is to generate a normal for
each plane in a polyhedra oriented so that it points outwards respectively to the surface. We assume all
surfaces are defined using polygons. But before determining normals for planes, we will need to
examine polygons in 3d.

Each polygon being constituted of a set of edges, we will later require a vector for each edge that
points in the polygon for any edge. See below.

µ §
Figure 8

In figure 8, we can see in red the said vectors for all edges. As we can see, the vectors do not
necessarely point towards the general center of mass. We could use the algorithm we used for
rendering polygons in two dimensions to determine the direction of the arrows, but that is a bit
complicated and involves trying to find a direction that is not parallel to any of the above lines. Thus,
we will try another approach.

First, pick any point in the polygon. Then, from that point, take the farthest point from it. See below:

µ §
Figure 9

(Please, do not measure it with a ruler :-))
Now say we started with the point marked by the big red square. Now, both point a and b are the
farthest points from the red square. You can pick any of the two. The objective here is to find three
consecutive points around the polygon for which the inside angle is less than 180 degrees. If all three
are on the circle (worst case), their angle is strictly smaller than 180 degrees (unless they are all the
same point, silly).

You could also pick the topmost point. If several are at the same height, use the leftmost (or rightmost,
whatever) one in the topmost points.

Now we are certain that the small angle is the inside angle. Let us draw the general situation:

µ §
Figure 10

Now, in a we see the above mentionned farthest point and the two adjacent edges. If we take these
edges as vectors as in b and then sum them as in c, we find a point (pointed by the red vector in c)
which is necessarely on the in side for both edges. Now it is easy to find a perpendicular vector for
both edges and make sure that they are in the good general direction. A way would be to take the
perpendicular vector and do a scalar multiplication with the above red vector, the result of which must
be strictly positive. If it is not, the you must take the opposite vector for perpendicular vector.

Now we know the situation for at least one edge. We need some way to deduce the other edges' status
from that edge's.

If we take Figure 10.c as our general case, the point at the end of the red vector is not necessarely on
the in side for both edges. However, if it is on the in side for any of the two edges, it is on the in side
for both, and if it is on the out side for any edge, it is on the out side for both.

Normally, we will never find two colinear edges in a polygon, but if we do, it is fairly easy to solve it
anyway (left as an exercise).

Now, briefly, here is how to determine if a normal to a plane points in the right direction. Pick the
point with the greatest z value (or x, or y). If many points have the same z value, break ties with
greatest x value, then greatest y value. Then, take all connected edges. Make them into vectors,
pointing from the above point to the other endpoints (that is, the z component is less than or equal to
zero). Make them unit vectors, that is, length of one. Find the vector with the most positive (or less
negative) z value. Break ties with the greates x value, and then greatest y value. Take its associated
edge. Now that edge is said to be outermost.

Now, from that outermost edge, take the two associated polygons. The edge has an associated vector
for each connected polygon to indicate the "in" direction. Starting from any of the two points of the
edge, add both these vectors. The resulting point is inside. Adjust the normal so that it is on the right
side of the plane for both polygons.

Now we have the normal for at least one plane straight. We will deduce correct side for the normal to
the other polygons in a similar manner than we did for the edges of a polygon, above.

Take two adjacent polygons, one for which you do know the normal, the other for which you want to
calculate the correct normal. Now take a shared edge (any edge will do). That edge has two "in"
vectors for the two polygons. Starting from any of the two points of the edge, add the two «in» vectors.
If the resulting point is on the «in» side for a plane, it is also on the «in» side of the other plane. If it is
on the «out» side of a plane, it is on the «out» side for both planes.

To get a general picture of what I'm trying to say, here's a drawing. Basically, where two lines
intersect, you get four distinct regions. One region lies entirely on the «in» side of both lines and
another region lies entirely on the «out» side of both lines (if the two lines define a polygon). The two
other regions are mixed region (they lie on the «in» side of a line and on the «out» side of the other
line). The «mixed» regions may or may not be part of the actual polygon, depending on whether the
angle is lesser or greater than 180 degrees.

µ §
Figure 11

So we are trying to find a point that is in the «in» or «out» region, but not in the «mixed» region. If, as
above, we take the edges as vectors and add the together, we end up in the either the «in» region or the
«out» region, but not in the «mixed» region. That can be proved very easily, geometrically (yet
strictly), but I don't feel like drawing it. :) Anyway, it should be simple enough.

13 Reducing a polygon to a mesh of triangles

Now that's fairly simple. The simplest is when you have a convex polygon. Pick any vertex. Now, take
its two adjacent vertexes. That's a triangle. In fact, that's your first triangle in your mesh of triangles.
Remove it from your polygon. Now you have a smaller polygon. Repeat the same operation again until
you are left with nothing. Example:

µ §

Figure 12

For the above polygon, we pick the green edges in 1. The triangle is shown in 2. When we remove it
from the polygon, we're left with what we see in 3.

This will take a n sided polygon and transform into n-2 triangles.

If the polygon is concave, we can subdivide it until it is convex and here is how we do that.

Take any vertex where the polygon is concave (i.e. the angle at that vertex is more than 180 degrees)
and call that vertex A. From that vertex, it can be proved geometrically that there exists another vertex
that is not connected by an edge to which you can extend a line segment without intersecting any of the
polygon's edges. In short, from vertex A, find another vertex, not immediately connected by an edge
(there are two vertices connected to A by an edge, don't pick any one of them). Call that new vertex B.
Make certain that AB does not intersect any of the other edges. If it does, pick another B. Once you're
settled on your choice of B, split your polygon in two smaller polygons by inserting edge AB. Repeat
the operation with the two smaller polygons until you either end up with triangles or end up with
convex polygons which you can split as above. It can again be proved (though a little more difficultly)
that you will end up with n-2 triangles if you had a n sided polygon.

Here's a tip on how to find a locally concave vertex.

µ §
Figure 13

[The arrows point towards the «in» side]

The two possible cases are shown in figure 13, either it is or it is not convex. In 1, it is convex, as in 2
it is concave. To determine if it is or not convex, take the line that passes through a and u, above. Now,
if v stands on the «in» side of the au line, it is convex. Otherwise, it is concave.

14 Gouraud shading

First, let us discuss a simple way for shading polygons. Imagine we have a light source that's infinitely
far. Imagine it's at z=positive infinity, x=0, y=0. If it's not, you can rotate everything so that it is (in
practice, you'll only need to rotate normals). Now, the z component of the polygons normals give us a

clue as to the angle between the polygon and the light rays. The z component goes from -1, facing
away from the light source (should be darkest) to 0, facing perpendicular to the light source (should be
in half light/penumbra), to +1, facing the light source (should be the brightest). From that, you can
shade it linearly or any way you want.

With this model, a polygon is uniformly shaded. Approximating round objects through polygons will
always look rough.

Gouraud shading is what we call an interpolated shading. It is not physically correct, but it looks good.
What it does is this: it makes the shade of a polygon change smoothly to match the shade of the
adjacent polygon. This makes the polyhedra look smooth and curved. However, it does not change the
actual edges to curves, thus the silhouette will remain unsmoothed. You can help that by allowing
curved edges if you feel like it.

First, we will interpolate a vertex normal for all vertexes. That is, we will give each vertex a «normal»
(note that a point does not have a normal, so you could call it pseudo-normal). To interpolate that
vertex «normal», averaging all connected polygons normals would be a way. Now, find the «shade»
for each vertex.

µ §
Figure 14

Now, say point a is at (ax,ay) and point b is at (bx,by). We're scan-converting the polygon, and the
gray-and-red line represents the current sanline, y0. Point P is the pixel we are currently drawing,
located at (x0,y0). Points m and n define the span we're currently drawing. Now, we will interpolate
the color for point m using a and b, and the color for n using a and c, then interpolate the color for P
using the color for m and n. Our interpolation will be linear. Say color for point a is Ca, color for point
b is Cb, for point c it is Cc, Cm for m, Cn for n and CP for P.

We will say that color at point m, Cm, is as follows:

Cm=(y0-ay)/(by-ay) x (Cb-Ca)+Ca

That is, is point m is halfway between a and b, we'll use half ca and half cb. If it's two-third the way
towards b, we'll use 1/3Ca and 2/3Cb. You get the picture. Same for n:

Cn=(y0-ay)/(cy-ay) x (Cc-Ca)+Ca.

Then we do the same for CP.

CP=(x0-mx)/(nx-mx) x (Cn-Cm)+Cn.

If you think a little, these calculations are exactly the same as Bresenham's line drawing algorithm,
seen previously in chapter 2.1. It is thus possible to do them incrementally. Example:

Say we start with the topmost scanline. Color for point m is at first Cb. Then, it will change linearly.
When point m reaches point a, it will be color Ca. Now, say dy=by-ay, dC=Cb-Ca, and u=y0-ay.

Cm=dC/dy x u+Ca.

Then, when y0 increases by 1, u increases by one and we get

Cm'=dC/dy x (u+1)+Ca=dC/dy x u+Ca + dC/dy
Cm'=Cm+dC/dy

Same as Bresenham. Thus, when going from one scanline to the next, we simply need to add dC/dy to
Cm, no multiplications or divisions are involved. The same goes for Cn. CP is done incrementally
from pixel to pixel.

15 Clipping polygons to planes

Eventually, you might need to clip your polygon, minimally to the z>0 volume. Several approaches
can be used. We will discuss here the Sutherlan-Hodgman algorithm. But first, let us speak of trivial
rejection/acceptation.

If a polygon does not intersect the clipping plane, it can be either trivially accepted or rejected. For
example, if every single point in a polygon are in z>0 and we are clipping with z>0, then the whole
polygon can be accepted. If every single point is in z<=0, the whole polygon can be trivially rejected.
The real problem comes with cases where some points are in z>0 and some are in z<=0. Another nifty
thing you can do is pre-calculate the bounding sphere of a poly with its center on a given point in the
poly. Let O be the sphere's center and R it's radius. If Oz-R>0, then the poly can be trivially accepted
even faster (no need to check every single point). If Oz+R<=0, the poly can be trivially refused. You
can extend this to polyhedras. You could also check wether the intersection of the sphere and the
polygon plane is in z>0 (or z<=0), which might be slightly better than checking for the whole sphere.

Here comes the Sutherland-Hodgman algorithm. Start with a point that you know is going to be
accepted. Now, move clockwise (or counter-clockwise) around the poly, accepting all edges that
should be trivially accepted. Now, when an edge crosses from acceptance to rejection (AtoR), find the
intersection with the clipping plane and replace the offending edge by a shortened one that can be
trivially accepted. Then, keep moving until you find an edge that crosses from rejection to acceptance
(RtoA), clip the edge and keep the acceptable half. Add an edge between the two edges AtoR and

RtoA. Keep going until you are done.

µ §
Figure 15

Figure 15 illustrates the process of clipping the abcde polygon to the clipping plane. Of note is this:
when performing this kind of clipping on convex polygons, the results are clear. Furthermore, a
convex polygon always produce a convex polygon when clipped. However, concave polygons
introduce the issue of degenerate edges and whether they should be there in a correctly clipped
polygon. Figure 16 shows such a case of degenerate edge generation.

µ §
Figure 16

In figure 16, the polygon to the left is clipped to the plane shown, the result is on the right. The bold
edge is double. That is, two edges pass there. This is what we call a degenerate edge. Degenerate edges
don't matter if what interests us is the area of the polygon, or if they happen to fall outside of the view
volume. What interests us is indeed the area of the polygon, but due to roundoff error, we could end up
with the faint trace of an edge on screen. On could eliminate these degenerate edges pretty easily.

To do so, do not add an edge between the points where you clip at first (edge xy in figure 15). Instead,
once you know all clipping points (x and y in the above example), sort them in increasing or
decreasing order according to one of the coordinate (e.g. you could sort the clipping point in increasing
x). Then, between first and second point, add an edge, between third and fourth, add an edge, between
fifth and sixth, add an edge and so on. This is based on the same idea that we used for our polygon
drawing algorithm in an earlier chapter. That is, when you intersect an edge, you either come out of the
polygon or go in the polygon. Then, between the first and second clipped point belongs an edge, etc...

However, since we are clipping to z=0, the degenerate edge has to be outside the view volume.
(Division by a very small z, when making projections, ensures that the projected edge is far from the
view window). Since we are clipping to z>0, let us pull out our limit mathematics.

Let us first examine the case where the edge lies entirely in the z=0 plane.

Let us assume we are displaying our polygon using a horizontal scan-line algorithm. Now, if the both
of the offending edge's endpoints are at y>0, then the projected edge will end up far up of the view
window. Same goes if both endpoints are at y>0. If they are on either side of y=0, then all projected
points will end up above or below the view window, except the exact point on the edge where y=0. If
that point's x<0, then x/z will end up far to the left, and if x>0, the point will end up far to the right. If
x=0, then we have the case x=y=0 and z tends towards positive zero (don't flame me for that choice of
words). In the case x=0, x/z will be zero (because 0/a for any nonzero a is 0) and so for y. Thus, the
projected edge should pass through the center of the view window, and go to infinity in both
directions. It's slope should be the same as the one it has in the z=0 plane. Just to make it simple, if we
have the plane equation (as we should) in the form Ax+By+Cz+D=0, we can find the projected slope
by fixing z=1: Ax+By+C+D=0, or y=-A/Bx-(C+D). Thus the slope of the projected line is -A/B. If B is
zero, we have a vertical line.

What we conclude is that if the edge's z coordinate is 0 and both of its endpoints are on the same side

of plane y=0, then the edge will not intercept any horizontal scanline and can thus be fully ignored. If
the endpoints are on either side of y=0, then it will have an intersection with all horizontal scanlines.
The projected edge will end up left if, when evaluated at y=0 and z=0 its x coordinate is less than 0
(from the plane equation, x=-D/A). If the x coordinate is positive, the edge ends up far to the right. If
x=y=0 when z=0, the edge will be projected to a line passing through the center of the screen with a
slope of -A/B.

In the case where one of the edge's endpoints is in the z=0 plane, that endpoint will be projected to
infinity and the other will not, we will end up with a half line in the general case, sometimes a line
segment.

Let us name the endpoint whose z coordinate is 0 P0. If P0's x<0, then it will be projected to the left of
the window. If P0's x>0, it will be projected to the right. Likewise, if P0's y<0, it will be projected
upwards, if y>0 it will be projected downwards.

The slope will be (v0-v1)/(u0-u1) where (u0,v0) is projected P0 and (u1,v1) is projected P1. This can
be written as
u0=P0x/p0z u1=P1x/P1z v0=P0y/P0z v1=P1y/P1z

It is of note that u1 and v1 are both relatively small numbers compared to u0 and v0. The slope is
therefore:

m=(P0y/P0z-P1y/P1z)/(P0x/P0z-P1x/P1z)
m=(P0y/P0z)/(P0x/P0z-P1x/P1z)-(P1y/P1z)/(P0x/P0z-P1x/P1z)
m=(P0y/P0z)/([P0xP1z-P1xP0z]/P0zP1z)-0
m=(P0y/P0z)(P0zP1z/[P0xP1z-0])
m=P0yP1z/(P0xP1z)
m=P0y/P0x.

By simmetry we could have found the inverse slope p=P0x/P0y. Thus, in the case where P0x=0, we are
facing a vertical projection. Else, the projection's slope is P0y/P0x. Anyway, the line passes through
(u1,v1).

In the case where P0=0, (u0,v0)=(0,0). Then the projected edge remains a line segment.

16 Interpolations and forward differencing

Oftentimes, us graphics programmer want to interpolate stuff, especially when the calculations are very
complex. For example, the texture mapping equations involve at least two divides per pixel, which can
be just a bit too much for small machines. Most of the time, we have a scanline v=k on screen that we
are displaying, and we want to display a span of pixels, e.g. a scanline in a triangle or something. The
calculations for these pixels can sometimes be complicated. If, for example, we have to draw pixels in
the span from u=2 to u=16 (a 14 pixel wide span) for a given scanline, we would appreciate reducing
the per-pixel calculations to the minimum.

Let's take for our example, the z value of a plane in a given pixel. Let's say the plane equation is
x+2y+z=1. We have already seen that z can be calculated with z=D/(Au+Bv+C), or z=1/(u+2v+1). Let
us imagine that we are rendering a polygon, and that the current scanline is v=1. Then, z=1/(u+3) for
the current scanline. If that a span goes from u=0 to u=20 (that is, on line v=.5, the polygon covers
pixels u=0 through u=20). We can see form the equation for z that when u=0, z=1/3, and when u=20,
z=1/23.

Calculating the other values is a bit complex because of the division. (Divisions on computers are
typically slower than other operations.) As of such, we could perhaps use an approximation of z
instead. The most naive one would be the following: just assume z is really of the form z=mu+b and
passes through the points u=0, z=1/3 and u=20, z=1/23. Thus:

z=mu+b verifies
1/3=m(0)+b and
1/23=m(20)+b

thus

1/3=b
and
1/23=20m+b
or
1/23=20m+1/3
1/23-1/3=20m
m=1/460-1/60 or approximately -0.01449275362319.

Thus, instead of using z=1/(u+3), we could use z=-0.01449275362319u+1/3. In this particular case,
this would be somewhat accurate because m is small.

Example, we know from the real equation that z=1/(u+3), thus when u=10, z=1/13, approximately
0.07692307692308. From the interpolated equation, when u=10, we get z=-
0.01449275362319*10+1/3, or approximately 0.1884057971014. The absolute error is approximately
0.11, which may or may not be large according to the units used for z. However, the relative error is
around 30%, which is quite high, and it is possible to create cases where the absolute error is quite
drastic.

To reduce the error, we could use a higher degree polynomial. E.g. instead of using z=mx+b, we could

for instance use z=Ax^2+Bx+C, a second degree polynomial. We would expect this polynomial to
reduce the error. The only problem with this and higher degree polynomials is to generate the
coefficients (A, B and C in this case) which will minimize the error. Even defining what "minimizing
the error" is can be troublesome, and depending on the exact definition, we will find different
coefficients.

A nice way of "minimizing the error" is using a Taylor series. Since this is not a calculus document, I
will not teach it in detail, but merely remind you of the sum. It can be demonstrated that all continuous
functions can be expressed as a sum of polynomials for a given range. We can translate that function so
as to center that range about any real, and such other things. In brief, the Taylor series of f(x) around a
is:

T=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+f''''(a)(x-a)^4/4!+...

This may look a bit scary, so here is the form of the general term:

Ti=fi(a)(x-a)^i/i!

and

T=T0+T1+T2+T3+...+Ti+...

Where fi(a) is the ith derivative of f evaluated at point a, and i! is the factorial of i, or 1x2x3x4x....xi.
As an example, the factorial of 4 is 1x2x3x4=24. It is possible to study this serie and determine for
which values of x it converges and such things, and it is very interesting to note that for values of x for
which it does not converge, it diverges badly usually.

Taylor series usually do a good job of converging relatively quickly in general. For particular cases,
one can usually find better solutions than a Taylor series, but in the general case, they are quite handy.
Saying that they converge "relatively quickly" means that you could evaluate, say, the first 10 terms
and be quite confident that the error is small. There are exceptions and special cases, of course, but this
is generally true.

What interests us in Taylor series is that they give us a very convenient way of generating a
polynomial of any degree to approximate any given function for a certain range. In particular, the
z=1/(mu+b) equation could be approximated with a Taylor series, and it's radius of convergence
determined, etc... (Please look carefully at the taylor series and you will see that it is indeed a
polynomial).

Here are a few well known and very used Taylor series expansions:

exp(x)=1+x+x^2/2+x^3/3!+x^4/4!+x^5/5!+x^6/6!+....
sin(x)=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-...
cos(x)=1-x^2/2!+x^4/4!-x^6/6!+x^8/8!-...

Taylor series for multivariable functions also exist, but they will not be discussed here. For a good
description of these, you can get a good advanced calculus book. My personnal reference is Advanced
engineering mathematics, seventh edition by Erwin Kreysig, ISBN 0-471-55380-8. As for derivatives,

limits et al, grab an introductory level calculus book.

Now the only problem is evalutating a polynomial at any point. As you know, evaluating Ax^2+Bx+C
at point x0 requires that we square x0, multiply it by A, add B times x0 and then finally add C. If we're
doing that once per pixel, we are losing a lot of time. However, the same idea as in incremental
calculations can be recuperated and used for any degree of polynomial. Generally speaking, we're
going to try to find what happens to f(x) as we increase x by one. Or, we're trying to find f(x+1)-f(x) to
see the difference between one pixel and the next. Then, all we need to do is add that value as we move
from one pixel to the next. Let's do an example with f(x)=mx+b.

f(x+1)-f(x)=[m(x+1)+b]-[mx+b]
f(x+1)-f(x)=m

So, as we move from a pixel to the next, we just need to add m to the previous value of f(x).

If we have a second order polynomial, the calculations are similar:

f(x)=Ax^2+Bx+C

f(x+1)-f(x)=[A(x+1)^2+B(x+1)+C]-[Ax^2+Bx+C]
=[A(x^2+2x+1)+Bx+B+C]-[Ax^2+Bx+C]
=[Ax^2+(2A+B)x+A+B+C]-[Ax^2+Bx+C]
=2Ax+A+B

Let's name that last equation g(x). So, as we move from x to x+1, we just need to add g(x) to the value
of f(x). However, calculating g(x) involves two multiplications (one of which which can be optimized
out by using bit shifts) and at least an add. But g(x) is a linear equation, so we can apply forward
differencing to it again and calculate:

g(x+1)-g(x)=[2A(x+1)+A+B]-[2AX+A+B]
=2A

So what we can do as we move from x to x+1 is first add g(x) to f(x) and then add 2A to g(x), only
two adds per pixel.

This can be extended to any degree of polynomial. In particular, NURBS (not described in this
document) can be optimized this way. (I do not intend to discuss NURBS, but this optimization is
considered less efficient that subdivision, but is worth mentionning.)

So what is the use for all this? Well, you could use a Taylor series to do texture mapping instead of
two divisions per pixel. This is a generalization of linear approximation for texture mapping. You
could also use it for evaluating the z value of a polygon in any pixel, as we were doing in the
introduction to this chapter. This however might not be very useful since you might not need the actual
z value, and the 1/z value might suffice which, as we have already seen, can be calculated
incrementally without approximation (e.g. no error except roundoff). This would be useful in visible
surface determination.

17 Specular highlights and the Phong illumination model

Up to now, we have been using a very straight illumination model. We have assumed that the "quantity
of light at a given point" can be calculated with some form of dot product of the light vector with the
normal vector. (Let me remind you that (a,b,c) dot (d,e,f) is ad+be+cf.) You should normalize the light
vector for this, and the plane normal should be of unit length too. Let us assume the plane normal is
(A,B,C) and that it is already normalized. Let us further assume that the light vector (vector from light
source to point that is lighted in 3d) is (P,Q,R). Then, the normalized light vector is (P,Q,R) times
1/sqrt(P*P+Q*Q+R*R). As you can see, normalizing the light vector is very annoying. (See chapter 2
for a more lengthy discussion of related topics).

Now, we have been imagining that no matter what angle you look at the object from, the intensity of
the light is the same. In reality, that may not be the case. If the object is somewhat shiny and a bright
light shines on it and you are looking at the object from an appropriate angle, there should be a very
intense spot. If you move your eye, the spot moves, and if you move your eye enough, the spot
disappears entirely. (Try it with an apple in a room with a single, intense light source, no mirrors et al).
This means that the light is reflected more in one general direction than in the others.

Let us look at a little drawing. Let N be the surface normal, L the light vector, R the reflection vector
and V the eye-to-object vector.

µ §
Figure 17

In the above picture, we see clearly that R is L mirrored by N. Please not that the angle between L and
R is not 90 degrees as it may appear, but rather twice the angle between L and N. It can be
demonstrated that:

R=2N(N dot L)-L

Or, in more detail, if R=(A,B,C), N=(D,E,F) and L=(G,H,I), then N dot L is DG+EH+FI, and thus we
have

A=2D(DG+EH+FI)-G
B=2E(DG+EH+FI)-H

C=2F(DG+EH+FI)-I

It is of note that, if the light is at infinity, for a flat polygon, N dot L is constant. If the light is not at
infinity or if the surface is curved, then N dot L varies.

Now, if we do not take into account the angle b in figure 17, the amount of light perceived should be
something like
I=Kcos(a)

where K is some constant that depends on the material and a is the angle shown in figure 17. If to that
we want to add the specular highlight, we should add a term that depend on angle b of figure 17. I
becomes

I=Kcos(a)+Ccos^n(b)

Where C is a constant that depends on the material. The constant n is a value that will specify how
sharp is the reflection. The higher the value for n, the more localized the reflection will be. Lower
values of n can be used for matte surfaces, and higher values can be used for more reflective surfaces.
Most light sources don't shine as bright from a distance (but some do shine as bright at any small
distance, such as the sun, but that light can be considered to lay "infinitely" far). In that case, we could
want to divide the above intensity by some function of the distance. We know from physics that the
quantity of energy at a distance r of a light source is inversely proportional to the square of the radius.
However, this may not look good in computer graphics. In short, you might want to use the square of
the length of the light vector, or the length of the light vector, or some other formula. Let us assume we
are using the length of the light vector. Then, the intensity becomes:

I=1/|L| * [Kcos(a)+Ccos^n(b)]

Furthermore, it is known that if t is the angle between the vectors A and B, then A dot B is |A||B|cos(t).
Then,

cos(t)=(A dot B)/(|A||B|)

If |A| and |B| are both one, we can ignore them. So, let L' be normalized L, and R' be normalized R and
V' be normalized V, and of course N is of unit length, then the equation is:

I=D * (K[N dot L']+C[R' dot V'])

Where D=1/|L|. We could have used some other function of |V|.

To that equation above, you may want to add some ambiant light, e.g. light that shines from
everywhere at the same time, such as when you are standing outside (you wouldn't see a very dark
corner in daylight, normally, so the light that is still present in a "dark corner" is the ambiant light). If
you have multiple light sources, just calculate the intensity from each light source and add them
together.

This of course assumes that a is comprised between 0 and 90 degrees, otherwise the light is on the
wrong side of the surface and doesn't affect it at all. (In which case the only light present would be the

light of intensity A).

18 Phong shading

Polygons are flat, and as such have a constant normal across their surface. When we used pseudo-
normals for gouraud shading. This was because we were attempting to model a curved surface with flat
polygons. We can use the Phong illumination model with flat polygons if we want. That is, forget
about the pseudo-normals, use the plane normal everywhere in the Phong illumination equation. This
will yield very nice looking flat surfaces, very realistic. However, most of the time, we want to model
curved surfaces and the polygons are merely an approximation to that curved surface. In a curved
surface, the normal would not be constant for a large area, it would change smoothly to reflect the
curvature. In our polygons, of course, the normal does not change. However, if we really want to
model curved surfaces with polygons, we find that the sharp contrasts between facets is visually
disturbing and does not represent a curved surface well enough. To this end, we made the intensity
change gradually with Gouraud shading. There is however a problem with Gouraud shading.

It is possible to demonstrate that no light inside a Gouraud shaded polygon can be of higher intensity
than any of the vertices. As of such, if a highlight were to fall inside the polygon (as is most probably
the case) and not on a vertex, we would miss it perhaps entierly. To this end, we might want to
interpolate the polygon normal instead of intensity from the vertices pseudo-normals. The idea is the
same as with Gouraud shading, except that instead of calculating a pseudo-normal at the vertices,
calculating the intensities at the vertices and then interpolating the intensity linearly, we will calculate
pseudo-normals at the vertices, interpolate linearly the pseudo-normals and then calculate the intensity.
The intensity can be calculated using any illumination model, and in particular the Phong illumination
model can be visually pleasent, though some surfaces don't have any specular highlights. (In which
case you can remove the specular factor from the equation entirely).

The calculations for Phong shading are very expensive per pixel, in fact too expensive even for
dedicated hardware oftentimes. It would be absurd to think that one could do real-time true Phong
shading on today's platforms. But in the end, what is true Phong shading? Nothing but an
approximation to what would happen if the polygon mesh really were meant to represent a curved
surface. I.e. Phong shading is an approximation to an approximation. The principal objective of Phong
shading is to yield nonlinear falloff and not miss any specular highlights. Who is there to say that no

other function will achieve that?

One of the solutions to this has been proposed in SIGGRAPH '86, included with this document. What
they do is pretty straightforward (but probably required a lot of hard work to achieve). They make a
Taylor series out of Phong shading and use only the first two terms of the series for the approximation.
Thus, once the initialization phase is completed, Phong shading requires but two adds per pixel, a little
more with specular highlights. The main problem, though, is the initialization phase, which includes
many multiplications, divisions, and even a square root. It will doubtlessly be faster than exact Phong
shading, but I am not so confident that it will be sufficiently fast to become very popular. Using
Gouraud shading and a very large number of polygons can yield comparable results at a very
acceptable speed.

In future versions of this document, I hope to discuss other ways of not missing the specular highlight.
But since this is exam week, I'll keep it to this for the moment being.

Version history

Original version (no version number): original draft, chapters 1 through 8.

Version 0.10 beta: added chapters 9 through 11, added version history. Still no proofreading,
spellchecking or whatever.

Version 0.11 beta: modified some chapters, noticed than (Q,P,R) is the normal vector (chapter 5). A
little proofreading was done.

Version 0.12 beta: I just noticed that this document needs a revision badly. Still, I don't have time. I
just added a few things about the scalar multiplication of two vectors being the D coefficient in the
plane equation. Added chapter 12. Also corrected a part about using arrays instead of lists. The
overhead is just as bad. Better to use lists. Ah, and I have to remember to add a part on calculating the
plane equation from more than three points to reduce roundoff error.

Version 0.20 beta: Still need to add the part about calculating A,B and C in plane eq. from many
points. However, corrected several of the mistakes I talked about in the preceding paragraph (i.e.
revision). Ameliorated the demonstration for 2d rotations. Started work on 3d rotations (this had me
thinking...)

Version 0.21 beta: converted to another word processor. Will now save in RTF instead of WRI.

Version 0.22 beta: corrected a few goofs. 3d rotations still on the workbench. Might add a part about
subdividing a polygon in triangles (a task which seems to fascinate people though I'm not certain why).
Will also add the very simple Gouraud shading algorithm in the next version (and drop a line about
bump mapping). This thing needs at least a table of contents, geez... I ran the grammar checker on this.
Tell me if it left anything out.

Version 0.23 beta: well, I made the version number at the start of this doc correct! :-) Did chapter 13
(subdividing into triangles) and chapter 14 (Gouraud shading).

Version 0.24 beta: removed all GIFs from file because of recent CompuServe-Unisys thingy. Don't ask
me for them, call CompuServe or Unisys [sigh].

Version 0.30 beta: added the very small yet powerful technique for texture mapping that eliminates the
division per pixel. It can also help for z-buffering. Corrected the copyright notice.

Version 0.31 beta: I, err, added yet another bit to texture mapping [did this right after posting it to
x2ftp.oulu, silly me]. Corrected a typo in chapter 13: a n-sided polygon turns into n-2 triangles, not n
triangles. Was bored tonight, added something to the logs chapter (I know, it's not that useful, but hey,
why would I remove it?) Added «Canada» to my address below (it seems I almost forgot internet is
worldwide tee hee hee). Addendum: I'm not certain that the GIF thing (see the paragraph about
v0.24beta above) applies to me, but I'm not taking any chances.

Version 0.32 beta: added bits and pieces here and there. The WWW version supposedly just became
available today. Special thanks to Lasse Rasinen for converting it. Special thanks also to Antti Rasinen.
I can't seem to be able to connect to the WWW server though, I just hope it really works. Corrected a
goof in the free directional texture mapping section.

Version 0.40 beta: Kevin Hunter joined forces with me and made that part in chapter two about
changes in coordinates system, finding the square root et al. Modified the thing about triangulating a
polygon. Added the Sutherland-Hodgman clipping algorithm and related material (the whole chapter
15). This document deserves a bibliography/suggested readings/whatever, but I don't think I have the
time for that. Might add a pointer to the 3d books list if I can find where it is. Anyway, if you're really
interested and want to know more, I'm using Computer Graphics, Principles and Practice by Foley, van
Dam, Feiner and Hughes, from Addison-Wesley ISBN 0-201-12110-7. There. It's not in the right
format, but it's there. MY E-MAIL ADDRESS CHANGED! PLEASE USE THIS ONE FROM NOW
ON!

Version 0.41 beta: added to chapter 3. Gave a more detailed discussion of a scan-line algorithm. Put in
a line about Paul Nettle's sbuffering in the same chapter. Will now include a "where can I get this doc
from" in the readme, and I'll try to put the last few version history entries in my announcements for
future versions of the doc.

Version 0.42 beta: removed the buggy PS file. Added an ASCII file containing most of the pics of the
document.

Version 0.50 beta: added chapters 16, 17 and 18 about Phong shading and illumination model,
interpolations forward differencing and Taylor series. I am also including an extract from SIGGRAPH
'86 for fast Phong shading. Source code is coming out good, so it just might be in the next version.

About the author

Sébastien Loisel is a student in university. He is studying computer sciences and mathematics and has
been doing all sorts of programs, both down-to-earth and hypothetical, theoritical models. He's been
thinking a lot about computer graphics lately and so decided to write this because he wanted to get his
ideas straight. After a while, he decided to distribute it on Internet (why the hell am I using third
person?)

The author would be happy to hear your comments, suggestions, critics, ideas or receive a postcard,
money, new computer and/or hardware or whatever (grin). If you do want to get in touch with me, well
here's my snail mail address:

Sébastien Loisel
1 J.K. Laflamme
Lévis, Québec
Canada
G6V 3R1

MY E-MAIL ADDRESS CHANGED! PLEASE USE THIS ONE FROM NOW ON!
loiselse@ift.ulaval.ca

Addendum: see enclosed file, README.3D.

I would like to thank Lasse Rasinen making the WWW version available by converting this doc to the
proper format. I would also like to thank Antti Rasinen for the WWW version. Thanks, guys.

I would like to thank Kevin Hunter for writing a big chunk of chapter 2. Thank you Kevin. Kevin
Hunter can be reached (at the time of this writing) as HUNTER@symbol.com.

	A tutorial for 2d and 3d vector and texture mapped graphics
	1 An introduction to 3d transformations
	1.1 Trigonometry
	Unit Vector Coordinate Translations
	Maintaining Systems of Unit Vectors
	Spinning In Space
	Faster!
	Perfection?

	Efficient Computation of Square Roots
	Isaac Strikes Again
	If You Don’t Like Newton...
	Table It

	Trig Functions
	2 Polygon drawing on a raster display in two dimensions
	2.1 A line algorithm for the polygon drawing algorithm
	3 3d polygon drawing
	4 Data Structures
	5 Texture mapping
	6 Of logarithms
	7 More on data structures and clipping
	8 A few more goodies...
	9 Sorting
	10 Depth-field rendering and the Z-buffer algorithm
	11 Bitmap scaling and mixing rendering techniques
	12 About automatically generating correctly oriented normals to planes.
	13 Reducing a polygon to a mesh of triangles
	14 Gouraud shading
	15 Clipping polygons to planes
	16 Interpolations and forward differencing
	17 Specular highlights and the Phong illumination model
	18 Phong shading

